summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Asset.inl
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Asset.inl')
-rw-r--r--src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Asset.inl2069
1 files changed, 2069 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Asset.inl b/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Asset.inl
new file mode 100644
index 0000000..ec481a7
--- /dev/null
+++ b/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Asset.inl
@@ -0,0 +1,2069 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+copyright notice, this list of conditions and the
+following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the
+following disclaimer in the documentation and/or other
+materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+contributors may be used to endorse or promote products
+derived from this software without specific prior
+written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+
+#include "AssetLib/glTF/glTFCommon.h"
+
+#include <assimp/MemoryIOWrapper.h>
+#include <assimp/StringUtils.h>
+#include <assimp/DefaultLogger.hpp>
+#include <assimp/Base64.hpp>
+
+// clang-format off
+#ifdef ASSIMP_ENABLE_DRACO
+
+// Google draco library headers spew many warnings. Bad Google, no cookie
+# if _MSC_VER
+# pragma warning(push)
+# pragma warning(disable : 4018) // Signed/unsigned mismatch
+# pragma warning(disable : 4804) // Unsafe use of type 'bool'
+# elif defined(__clang__)
+# pragma clang diagnostic push
+# pragma clang diagnostic ignored "-Wsign-compare"
+# elif defined(__GNUC__)
+# pragma GCC diagnostic push
+# if (__GNUC__ > 4)
+# pragma GCC diagnostic ignored "-Wbool-compare"
+# endif
+# pragma GCC diagnostic ignored "-Wsign-compare"
+#endif
+
+#include "draco/compression/decode.h"
+#include "draco/core/decoder_buffer.h"
+
+#if _MSC_VER
+# pragma warning(pop)
+#elif defined(__clang__)
+# pragma clang diagnostic pop
+#elif defined(__GNUC__)
+# pragma GCC diagnostic pop
+#endif
+#ifndef DRACO_MESH_COMPRESSION_SUPPORTED
+# error glTF: KHR_draco_mesh_compression: draco library must have DRACO_MESH_COMPRESSION_SUPPORTED
+#endif
+#endif
+// clang-format on
+
+using namespace Assimp;
+using namespace glTFCommon;
+
+namespace glTF2 {
+
+namespace {
+
+//
+// JSON Value reading helpers
+//
+inline CustomExtension ReadExtensions(const char *name, Value &obj) {
+ CustomExtension ret;
+ ret.name = name;
+ if (obj.IsObject()) {
+ ret.mValues.isPresent = true;
+ for (auto it = obj.MemberBegin(); it != obj.MemberEnd(); ++it) {
+ auto &val = it->value;
+ ret.mValues.value.push_back(ReadExtensions(it->name.GetString(), val));
+ }
+ } else if (obj.IsArray()) {
+ ret.mValues.value.reserve(obj.Size());
+ ret.mValues.isPresent = true;
+ for (unsigned int i = 0; i < obj.Size(); ++i) {
+ ret.mValues.value.push_back(ReadExtensions(name, obj[i]));
+ }
+ } else if (obj.IsNumber()) {
+ if (obj.IsUint64()) {
+ ret.mUint64Value.value = obj.GetUint64();
+ ret.mUint64Value.isPresent = true;
+ } else if (obj.IsInt64()) {
+ ret.mInt64Value.value = obj.GetInt64();
+ ret.mInt64Value.isPresent = true;
+ } else if (obj.IsDouble()) {
+ ret.mDoubleValue.value = obj.GetDouble();
+ ret.mDoubleValue.isPresent = true;
+ }
+ } else if (obj.IsString()) {
+ ReadValue(obj, ret.mStringValue);
+ ret.mStringValue.isPresent = true;
+ } else if (obj.IsBool()) {
+ ret.mBoolValue.value = obj.GetBool();
+ ret.mBoolValue.isPresent = true;
+ }
+ return ret;
+}
+
+inline void CopyData(size_t count, const uint8_t *src, size_t src_stride,
+ uint8_t *dst, size_t dst_stride) {
+ if (src_stride == dst_stride) {
+ memcpy(dst, src, count * src_stride);
+ return;
+ }
+
+ size_t sz = std::min(src_stride, dst_stride);
+ for (size_t i = 0; i < count; ++i) {
+ memcpy(dst, src, sz);
+ if (sz < dst_stride) {
+ memset(dst + sz, 0, dst_stride - sz);
+ }
+ src += src_stride;
+ dst += dst_stride;
+ }
+}
+
+void SetVector(vec4 &v, const float (&in)[4]) {
+ v[0] = in[0];
+ v[1] = in[1];
+ v[2] = in[2];
+ v[3] = in[3];
+}
+
+void SetVector(vec3 &v, const float (&in)[3]) {
+ v[0] = in[0];
+ v[1] = in[1];
+ v[2] = in[2];
+}
+
+template <int N>
+inline int Compare(const char *attr, const char (&str)[N]) {
+ return (strncmp(attr, str, N - 1) == 0) ? N - 1 : 0;
+}
+
+#if _MSC_VER
+#pragma warning(push)
+#pragma warning(disable : 4706)
+#endif // _MSC_VER
+
+inline bool GetAttribVector(Mesh::Primitive &p, const char *attr, Mesh::AccessorList *&v, int &pos) {
+ if ((pos = Compare(attr, "POSITION"))) {
+ v = &(p.attributes.position);
+ } else if ((pos = Compare(attr, "NORMAL"))) {
+ v = &(p.attributes.normal);
+ } else if ((pos = Compare(attr, "TANGENT"))) {
+ v = &(p.attributes.tangent);
+ } else if ((pos = Compare(attr, "TEXCOORD"))) {
+ v = &(p.attributes.texcoord);
+ } else if ((pos = Compare(attr, "COLOR"))) {
+ v = &(p.attributes.color);
+ } else if ((pos = Compare(attr, "JOINT"))) {
+ v = &(p.attributes.joint);
+ } else if ((pos = Compare(attr, "JOINTMATRIX"))) {
+ v = &(p.attributes.jointmatrix);
+ } else if ((pos = Compare(attr, "WEIGHT"))) {
+ v = &(p.attributes.weight);
+ } else
+ return false;
+ return true;
+}
+
+inline bool GetAttribTargetVector(Mesh::Primitive &p, const int targetIndex, const char *attr, Mesh::AccessorList *&v, int &pos) {
+ if ((pos = Compare(attr, "POSITION"))) {
+ v = &(p.targets[targetIndex].position);
+ } else if ((pos = Compare(attr, "NORMAL"))) {
+ v = &(p.targets[targetIndex].normal);
+ } else if ((pos = Compare(attr, "TANGENT"))) {
+ v = &(p.targets[targetIndex].tangent);
+ } else
+ return false;
+ return true;
+}
+
+} // namespace
+
+inline Value *Object::FindString(Value &val, const char *memberId) {
+ return FindStringInContext(val, memberId, id.c_str(), name.c_str());
+}
+
+inline Value *Object::FindNumber(Value &val, const char *memberId) {
+ return FindNumberInContext(val, memberId, id.c_str(), name.c_str());
+}
+
+inline Value *Object::FindUInt(Value &val, const char *memberId) {
+ return FindUIntInContext(val, memberId, id.c_str(), name.c_str());
+}
+
+inline Value *Object::FindArray(Value &val, const char *memberId) {
+ return FindArrayInContext(val, memberId, id.c_str(), name.c_str());
+}
+
+inline Value *Object::FindObject(Value &val, const char *memberId) {
+ return FindObjectInContext(val, memberId, id.c_str(), name.c_str());
+}
+
+inline Value *Object::FindExtension(Value &val, const char *extensionId) {
+ return FindExtensionInContext(val, extensionId, id.c_str(), name.c_str());
+}
+
+inline void Object::ReadExtensions(Value &val) {
+ if (Value *curExtensions = FindObject(val, "extensions")) {
+ this->customExtensions = glTF2::ReadExtensions("extensions", *curExtensions);
+ }
+}
+
+inline void Object::ReadExtras(Value &val) {
+ if (Value *curExtras = FindObject(val, "extras")) {
+ this->extras = glTF2::ReadExtensions("extras", *curExtras);
+ }
+}
+
+#ifdef ASSIMP_ENABLE_DRACO
+
+template <typename T>
+inline void CopyFaceIndex_Draco(Buffer &decodedIndexBuffer, const draco::Mesh &draco_mesh) {
+ const size_t faceStride = sizeof(T) * 3;
+ for (draco::FaceIndex f(0); f < draco_mesh.num_faces(); ++f) {
+ const draco::Mesh::Face &face = draco_mesh.face(f);
+ T indices[3] = { static_cast<T>(face[0].value()), static_cast<T>(face[1].value()), static_cast<T>(face[2].value()) };
+ memcpy(decodedIndexBuffer.GetPointer() + (f.value() * faceStride), &indices[0], faceStride);
+ }
+}
+
+inline void SetDecodedIndexBuffer_Draco(const draco::Mesh &dracoMesh, Mesh::Primitive &prim) {
+ if (!prim.indices || dracoMesh.num_faces() == 0)
+ return;
+
+ // Create a decoded Index buffer (if there is one)
+ size_t componentBytes = prim.indices->GetBytesPerComponent();
+
+ std::unique_ptr<Buffer> decodedIndexBuffer(new Buffer());
+ decodedIndexBuffer->Grow(dracoMesh.num_faces() * 3 * componentBytes);
+
+ // If accessor uses the same size as draco implementation, copy the draco buffer directly
+
+ // Usually uint32_t but shouldn't assume
+ if (sizeof(dracoMesh.face(draco::FaceIndex(0))[0]) == componentBytes) {
+ memcpy(decodedIndexBuffer->GetPointer(), &dracoMesh.face(draco::FaceIndex(0))[0], decodedIndexBuffer->byteLength);
+ return;
+ }
+
+ // Not same size, convert
+ switch (componentBytes) {
+ case sizeof(uint32_t):
+ CopyFaceIndex_Draco<uint32_t>(*decodedIndexBuffer, dracoMesh);
+ break;
+ case sizeof(uint16_t):
+ CopyFaceIndex_Draco<uint16_t>(*decodedIndexBuffer, dracoMesh);
+ break;
+ case sizeof(uint8_t):
+ CopyFaceIndex_Draco<uint8_t>(*decodedIndexBuffer, dracoMesh);
+ break;
+ default:
+ ai_assert(false);
+ break;
+ }
+
+ // Assign this alternate data buffer to the accessor
+ prim.indices->decodedBuffer.swap(decodedIndexBuffer);
+}
+
+template <typename T>
+static bool GetAttributeForAllPoints_Draco(const draco::Mesh &dracoMesh,
+ const draco::PointAttribute &dracoAttribute,
+ Buffer &outBuffer) {
+ size_t byteOffset = 0;
+ T values[4] = { 0, 0, 0, 0 };
+ for (draco::PointIndex i(0); i < dracoMesh.num_points(); ++i) {
+ const draco::AttributeValueIndex val_index = dracoAttribute.mapped_index(i);
+ if (!dracoAttribute.ConvertValue<T>(val_index, dracoAttribute.num_components(), values)) {
+ return false;
+ }
+
+ memcpy(outBuffer.GetPointer() + byteOffset, &values[0], sizeof(T) * dracoAttribute.num_components());
+ byteOffset += sizeof(T) * dracoAttribute.num_components();
+ }
+
+ return true;
+}
+
+inline void SetDecodedAttributeBuffer_Draco(const draco::Mesh &dracoMesh, uint32_t dracoAttribId, Accessor &accessor) {
+ // Create decoded buffer
+ const draco::PointAttribute *pDracoAttribute = dracoMesh.GetAttributeByUniqueId(dracoAttribId);
+ if (pDracoAttribute == nullptr) {
+ throw DeadlyImportError("GLTF: Invalid draco attribute id: ", dracoAttribId);
+ }
+
+ size_t componentBytes = accessor.GetBytesPerComponent();
+
+ std::unique_ptr<Buffer> decodedAttribBuffer(new Buffer());
+ decodedAttribBuffer->Grow(dracoMesh.num_points() * pDracoAttribute->num_components() * componentBytes);
+
+ switch (accessor.componentType) {
+ case ComponentType_BYTE:
+ GetAttributeForAllPoints_Draco<int8_t>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer);
+ break;
+ case ComponentType_UNSIGNED_BYTE:
+ GetAttributeForAllPoints_Draco<uint8_t>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer);
+ break;
+ case ComponentType_SHORT:
+ GetAttributeForAllPoints_Draco<int16_t>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer);
+ break;
+ case ComponentType_UNSIGNED_SHORT:
+ GetAttributeForAllPoints_Draco<uint16_t>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer);
+ break;
+ case ComponentType_UNSIGNED_INT:
+ GetAttributeForAllPoints_Draco<uint32_t>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer);
+ break;
+ case ComponentType_FLOAT:
+ GetAttributeForAllPoints_Draco<float>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer);
+ break;
+ default:
+ ai_assert(false);
+ break;
+ }
+
+ // Assign this alternate data buffer to the accessor
+ accessor.decodedBuffer.swap(decodedAttribBuffer);
+}
+
+#endif // ASSIMP_ENABLE_DRACO
+
+//
+// LazyDict methods
+//
+
+template <class T>
+inline LazyDict<T>::LazyDict(Asset &asset, const char *dictId, const char *extId) :
+ mDictId(dictId),
+ mExtId(extId),
+ mDict(0),
+ mAsset(asset) {
+ asset.mDicts.push_back(this); // register to the list of dictionaries
+}
+
+template <class T>
+inline LazyDict<T>::~LazyDict() {
+ for (size_t i = 0; i < mObjs.size(); ++i) {
+ delete mObjs[i];
+ }
+}
+
+template <class T>
+inline void LazyDict<T>::AttachToDocument(Document &doc) {
+ Value *container = nullptr;
+ const char *context = nullptr;
+
+ if (mExtId) {
+ if (Value *exts = FindObject(doc, "extensions")) {
+ container = FindObjectInContext(*exts, mExtId, "extensions");
+ context = mExtId;
+ }
+ } else {
+ container = &doc;
+ context = "the document";
+ }
+
+ if (container) {
+ mDict = FindArrayInContext(*container, mDictId, context);
+ }
+}
+
+template <class T>
+inline void LazyDict<T>::DetachFromDocument() {
+ mDict = nullptr;
+}
+
+template <class T>
+unsigned int LazyDict<T>::Remove(const char *id) {
+ id = T::TranslateId(mAsset, id);
+
+ typename IdDict::iterator objIt = mObjsById.find(id);
+
+ if (objIt == mObjsById.end()) {
+ throw DeadlyExportError("GLTF: Object with id \"" + std::string(id) + "\" is not found");
+ }
+
+ const unsigned int index = objIt->second;
+
+ mAsset.mUsedIds[id] = false;
+ mObjsById.erase(id);
+ mObjsByOIndex.erase(index);
+ delete mObjs[index];
+ mObjs.erase(mObjs.begin() + index);
+
+ //update index of object in mObjs;
+ for (unsigned int i = index; i < mObjs.size(); ++i) {
+ T *obj = mObjs[i];
+
+ obj->index = i;
+ }
+
+ for (IdDict::iterator it = mObjsById.begin(); it != mObjsById.end(); ++it) {
+ if (it->second <= index) {
+ continue;
+ }
+
+ mObjsById[it->first] = it->second - 1;
+ }
+
+ for (Dict::iterator it = mObjsByOIndex.begin(); it != mObjsByOIndex.end(); ++it) {
+ if (it->second <= index) {
+ continue;
+ }
+
+ mObjsByOIndex[it->first] = it->second - 1;
+ }
+
+ return index;
+}
+
+template <class T>
+Ref<T> LazyDict<T>::Retrieve(unsigned int i) {
+
+ typename Dict::iterator it = mObjsByOIndex.find(i);
+ if (it != mObjsByOIndex.end()) { // already created?
+ return Ref<T>(mObjs, it->second);
+ }
+
+ // read it from the JSON object
+ if (!mDict) {
+ throw DeadlyImportError("GLTF: Missing section \"", mDictId, "\"");
+ }
+
+ if (!mDict->IsArray()) {
+ throw DeadlyImportError("GLTF: Field \"", mDictId, "\" is not an array");
+ }
+
+ if (i >= mDict->Size()) {
+ throw DeadlyImportError("GLTF: Array index ", i, " is out of bounds (", mDict->Size(), ") for \"", mDictId, "\"");
+ }
+
+ Value &obj = (*mDict)[i];
+
+ if (!obj.IsObject()) {
+ throw DeadlyImportError("GLTF: Object at index ", i, " in array \"", mDictId, "\" is not a JSON object");
+ }
+
+ if (mRecursiveReferenceCheck.find(i) != mRecursiveReferenceCheck.end()) {
+ throw DeadlyImportError("GLTF: Object at index ", i, " in array \"", mDictId, "\" has recursive reference to itself");
+ }
+ mRecursiveReferenceCheck.insert(i);
+
+ // Unique ptr prevents memory leak in case of Read throws an exception
+ auto inst = std::unique_ptr<T>(new T());
+ // Try to make this human readable so it can be used in error messages.
+ inst->id = std::string(mDictId) + "[" + ai_to_string(i) + "]";
+ inst->oIndex = i;
+ ReadMember(obj, "name", inst->name);
+ inst->Read(obj, mAsset);
+ inst->ReadExtensions(obj);
+ inst->ReadExtras(obj);
+
+ Ref<T> result = Add(inst.release());
+ mRecursiveReferenceCheck.erase(i);
+ return result;
+}
+
+template <class T>
+Ref<T> LazyDict<T>::Get(unsigned int i) {
+ return Ref<T>(mObjs, i);
+}
+
+template <class T>
+Ref<T> LazyDict<T>::Get(const char *id) {
+ id = T::TranslateId(mAsset, id);
+
+ typename IdDict::iterator it = mObjsById.find(id);
+ if (it != mObjsById.end()) { // already created?
+ return Ref<T>(mObjs, it->second);
+ }
+
+ return Ref<T>();
+}
+
+template <class T>
+Ref<T> LazyDict<T>::Add(T *obj) {
+ unsigned int idx = unsigned(mObjs.size());
+ mObjs.push_back(obj);
+ mObjsByOIndex[obj->oIndex] = idx;
+ mObjsById[obj->id] = idx;
+ mAsset.mUsedIds[obj->id] = true;
+ return Ref<T>(mObjs, idx);
+}
+
+template <class T>
+Ref<T> LazyDict<T>::Create(const char *id) {
+ Asset::IdMap::iterator it = mAsset.mUsedIds.find(id);
+ if (it != mAsset.mUsedIds.end()) {
+ throw DeadlyImportError("GLTF: two objects with the same ID exist");
+ }
+ T *inst = new T();
+ unsigned int idx = unsigned(mObjs.size());
+ inst->id = id;
+ inst->index = idx;
+ inst->oIndex = idx;
+ return Add(inst);
+}
+
+//
+// glTF dictionary objects methods
+//
+inline Buffer::Buffer() :
+ byteLength(0),
+ type(Type_arraybuffer),
+ EncodedRegion_Current(nullptr),
+ mIsSpecial(false) {}
+
+inline Buffer::~Buffer() {
+ for (SEncodedRegion *reg : EncodedRegion_List)
+ delete reg;
+}
+
+inline const char *Buffer::TranslateId(Asset & /*r*/, const char *id) {
+ return id;
+}
+
+inline void Buffer::Read(Value &obj, Asset &r) {
+ size_t statedLength = MemberOrDefault<size_t>(obj, "byteLength", 0);
+ byteLength = statedLength;
+
+ Value *it = FindString(obj, "uri");
+ if (!it) {
+ if (statedLength > 0) {
+ throw DeadlyImportError("GLTF: buffer with non-zero length missing the \"uri\" attribute");
+ }
+ return;
+ }
+
+ const char *uri = it->GetString();
+
+ glTFCommon::Util::DataURI dataURI;
+ if (ParseDataURI(uri, it->GetStringLength(), dataURI)) {
+ if (dataURI.base64) {
+ uint8_t *data = nullptr;
+ this->byteLength = Base64::Decode(dataURI.data, dataURI.dataLength, data);
+ this->mData.reset(data, std::default_delete<uint8_t[]>());
+
+ if (statedLength > 0 && this->byteLength != statedLength) {
+ throw DeadlyImportError("GLTF: buffer \"", id, "\", expected ", ai_to_string(statedLength),
+ " bytes, but found ", ai_to_string(dataURI.dataLength));
+ }
+ } else { // assume raw data
+ if (statedLength != dataURI.dataLength) {
+ throw DeadlyImportError("GLTF: buffer \"", id, "\", expected ", ai_to_string(statedLength),
+ " bytes, but found ", ai_to_string(dataURI.dataLength));
+ }
+
+ this->mData.reset(new uint8_t[dataURI.dataLength], std::default_delete<uint8_t[]>());
+ memcpy(this->mData.get(), dataURI.data, dataURI.dataLength);
+ }
+ } else { // Local file
+ if (byteLength > 0) {
+ std::string dir = !r.mCurrentAssetDir.empty() ? (r.mCurrentAssetDir.back() == '/' ? r.mCurrentAssetDir : r.mCurrentAssetDir + '/') : "";
+
+ IOStream *file = r.OpenFile(dir + uri, "rb");
+ if (file) {
+ bool ok = LoadFromStream(*file, byteLength);
+ delete file;
+
+ if (!ok)
+ throw DeadlyImportError("GLTF: error while reading referenced file \"", uri, "\"");
+ } else {
+ throw DeadlyImportError("GLTF: could not open referenced file \"", uri, "\"");
+ }
+ }
+ }
+}
+
+inline bool Buffer::LoadFromStream(IOStream &stream, size_t length, size_t baseOffset) {
+ byteLength = length ? length : stream.FileSize();
+
+ if (byteLength > stream.FileSize()) {
+ throw DeadlyImportError("GLTF: Invalid byteLength exceeds size of actual data.");
+ }
+
+ if (baseOffset) {
+ stream.Seek(baseOffset, aiOrigin_SET);
+ }
+
+ mData.reset(new uint8_t[byteLength], std::default_delete<uint8_t[]>());
+
+ if (stream.Read(mData.get(), byteLength, 1) != 1) {
+ return false;
+ }
+ return true;
+}
+
+inline void Buffer::EncodedRegion_Mark(const size_t pOffset, const size_t pEncodedData_Length, uint8_t *pDecodedData, const size_t pDecodedData_Length, const std::string &pID) {
+ // Check pointer to data
+ if (pDecodedData == nullptr) throw DeadlyImportError("GLTF: for marking encoded region pointer to decoded data must be provided.");
+
+ // Check offset
+ if (pOffset > byteLength) {
+ const uint8_t val_size = 32;
+
+ char val[val_size];
+
+ ai_snprintf(val, val_size, AI_SIZEFMT, pOffset);
+ throw DeadlyImportError("GLTF: incorrect offset value (", val, ") for marking encoded region.");
+ }
+
+ // Check length
+ if ((pOffset + pEncodedData_Length) > byteLength) {
+ const uint8_t val_size = 64;
+
+ char val[val_size];
+
+ ai_snprintf(val, val_size, AI_SIZEFMT "/" AI_SIZEFMT, pOffset, pEncodedData_Length);
+ throw DeadlyImportError("GLTF: encoded region with offset/length (", val, ") is out of range.");
+ }
+
+ // Add new region
+ EncodedRegion_List.push_back(new SEncodedRegion(pOffset, pEncodedData_Length, pDecodedData, pDecodedData_Length, pID));
+ // And set new value for "byteLength"
+ byteLength += (pDecodedData_Length - pEncodedData_Length);
+}
+
+inline void Buffer::EncodedRegion_SetCurrent(const std::string &pID) {
+ if ((EncodedRegion_Current != nullptr) && (EncodedRegion_Current->ID == pID)) {
+ return;
+ }
+
+ for (SEncodedRegion *reg : EncodedRegion_List) {
+ if (reg->ID == pID) {
+ EncodedRegion_Current = reg;
+ return;
+ }
+ }
+
+ throw DeadlyImportError("GLTF: EncodedRegion with ID: \"", pID, "\" not found.");
+}
+
+inline bool Buffer::ReplaceData(const size_t pBufferData_Offset, const size_t pBufferData_Count, const uint8_t *pReplace_Data, const size_t pReplace_Count) {
+
+ if ((pBufferData_Count == 0) || (pReplace_Count == 0) || (pReplace_Data == nullptr)) {
+ return false;
+ }
+
+ const size_t new_data_size = byteLength + pReplace_Count - pBufferData_Count;
+ uint8_t *new_data = new uint8_t[new_data_size];
+ // Copy data which place before replacing part.
+ ::memcpy(new_data, mData.get(), pBufferData_Offset);
+ // Copy new data.
+ ::memcpy(&new_data[pBufferData_Offset], pReplace_Data, pReplace_Count);
+ // Copy data which place after replacing part.
+ ::memcpy(&new_data[pBufferData_Offset + pReplace_Count], &mData.get()[pBufferData_Offset + pBufferData_Count], pBufferData_Offset);
+ // Apply new data
+ mData.reset(new_data, std::default_delete<uint8_t[]>());
+ byteLength = new_data_size;
+
+ return true;
+}
+
+inline bool Buffer::ReplaceData_joint(const size_t pBufferData_Offset, const size_t pBufferData_Count, const uint8_t *pReplace_Data, const size_t pReplace_Count) {
+ if ((pBufferData_Count == 0) || (pReplace_Count == 0) || (pReplace_Data == nullptr)) {
+ return false;
+ }
+
+ const size_t new_data_size = byteLength + pReplace_Count - pBufferData_Count;
+ uint8_t *new_data = new uint8_t[new_data_size];
+ // Copy data which place before replacing part.
+ memcpy(new_data, mData.get(), pBufferData_Offset);
+ // Copy new data.
+ memcpy(&new_data[pBufferData_Offset], pReplace_Data, pReplace_Count);
+ // Copy data which place after replacing part.
+ memcpy(&new_data[pBufferData_Offset + pReplace_Count], &mData.get()[pBufferData_Offset + pBufferData_Count], new_data_size - (pBufferData_Offset + pReplace_Count));
+ // Apply new data
+ mData.reset(new_data, std::default_delete<uint8_t[]>());
+ byteLength = new_data_size;
+
+ return true;
+}
+
+inline size_t Buffer::AppendData(uint8_t *data, size_t length) {
+ const size_t offset = this->byteLength;
+
+ // Force alignment to 4 bits
+ const size_t paddedLength = (length + 3) & ~3;
+ Grow(paddedLength);
+ memcpy(mData.get() + offset, data, length);
+ memset(mData.get() + offset + length, 0, paddedLength - length);
+ return offset;
+}
+
+inline void Buffer::Grow(size_t amount) {
+ if (amount <= 0) {
+ return;
+ }
+
+ // Capacity is big enough
+ if (capacity >= byteLength + amount) {
+ byteLength += amount;
+ return;
+ }
+
+ // Just allocate data which we need
+ capacity = byteLength + amount;
+
+ uint8_t *b = new uint8_t[capacity];
+ if (nullptr != mData) {
+ memcpy(b, mData.get(), byteLength);
+ }
+ mData.reset(b, std::default_delete<uint8_t[]>());
+ byteLength += amount;
+}
+
+//
+// struct BufferView
+//
+inline void BufferView::Read(Value &obj, Asset &r) {
+ if (Value *bufferVal = FindUInt(obj, "buffer")) {
+ buffer = r.buffers.Retrieve(bufferVal->GetUint());
+ }
+
+ if (!buffer) {
+ throw DeadlyImportError("GLTF: Buffer view without valid buffer.");
+ }
+
+ byteOffset = MemberOrDefault(obj, "byteOffset", size_t(0));
+ byteLength = MemberOrDefault(obj, "byteLength", size_t(0));
+ byteStride = MemberOrDefault(obj, "byteStride", 0u);
+
+ // Check length
+ if ((byteOffset + byteLength) > buffer->byteLength) {
+ throw DeadlyImportError("GLTF: Buffer view with offset/length (", byteOffset, "/", byteLength, ") is out of range.");
+ }
+}
+
+inline uint8_t *BufferView::GetPointer(size_t accOffset) {
+ if (!buffer) {
+ return nullptr;
+ }
+ uint8_t *basePtr = buffer->GetPointer();
+ if (!basePtr) {
+ return nullptr;
+ }
+
+ size_t offset = accOffset + byteOffset;
+ if (buffer->EncodedRegion_Current != nullptr) {
+ const size_t begin = buffer->EncodedRegion_Current->Offset;
+ const size_t end = begin + buffer->EncodedRegion_Current->DecodedData_Length;
+ if ((offset >= begin) && (offset < end)) {
+ return &buffer->EncodedRegion_Current->DecodedData[offset - begin];
+ }
+ }
+
+ return basePtr + offset;
+}
+
+//
+// struct Accessor
+//
+inline void Accessor::Sparse::PopulateData(size_t numBytes, uint8_t *bytes) {
+ if (bytes) {
+ data.assign(bytes, bytes + numBytes);
+ } else {
+ data.resize(numBytes, 0x00);
+ }
+}
+
+inline void Accessor::Sparse::PatchData(unsigned int elementSize) {
+ uint8_t *pIndices = indices->GetPointer(indicesByteOffset);
+ const unsigned int indexSize = int(ComponentTypeSize(indicesType));
+ uint8_t *indicesEnd = pIndices + count * indexSize;
+
+ uint8_t *pValues = values->GetPointer(valuesByteOffset);
+ while (pIndices != indicesEnd) {
+ size_t offset;
+ switch (indicesType) {
+ case ComponentType_UNSIGNED_BYTE:
+ offset = *pIndices;
+ break;
+ case ComponentType_UNSIGNED_SHORT:
+ offset = *reinterpret_cast<uint16_t *>(pIndices);
+ break;
+ case ComponentType_UNSIGNED_INT:
+ offset = *reinterpret_cast<uint32_t *>(pIndices);
+ break;
+ default:
+ // have fun with float and negative values from signed types as indices.
+ throw DeadlyImportError("Unsupported component type in index.");
+ }
+
+ offset *= elementSize;
+
+ if (offset + elementSize > data.size()) {
+ throw DeadlyImportError("Invalid sparse accessor. Byte offset for patching points outside allocated memory.");
+ }
+
+ std::memcpy(data.data() + offset, pValues, elementSize);
+
+ pValues += elementSize;
+ pIndices += indexSize;
+ }
+}
+
+inline void Accessor::Read(Value &obj, Asset &r) {
+ if (Value *bufferViewVal = FindUInt(obj, "bufferView")) {
+ bufferView = r.bufferViews.Retrieve(bufferViewVal->GetUint());
+ }
+
+ byteOffset = MemberOrDefault(obj, "byteOffset", size_t(0));
+ componentType = MemberOrDefault(obj, "componentType", ComponentType_BYTE);
+ {
+ const Value *countValue = FindUInt(obj, "count");
+ if (!countValue) {
+ throw DeadlyImportError("A count value is required, when reading ", id.c_str(), name.empty() ? "" : " (" + name + ")");
+ }
+ count = countValue->GetUint();
+ }
+
+ const char *typestr;
+ type = ReadMember(obj, "type", typestr) ? AttribType::FromString(typestr) : AttribType::SCALAR;
+
+ if (bufferView) {
+ // Check length
+ unsigned long long byteLength = (unsigned long long)GetBytesPerComponent() * (unsigned long long)count;
+
+ // handle integer overflow
+ if (byteLength < count) {
+ throw DeadlyImportError("GLTF: Accessor with offset/count (", byteOffset, "/", count, ") is out of range.");
+ }
+
+ if ((byteOffset + byteLength) > bufferView->byteLength || (bufferView->byteOffset + byteOffset + byteLength) > bufferView->buffer->byteLength) {
+ throw DeadlyImportError("GLTF: Accessor with offset/length (", byteOffset, "/", byteLength, ") is out of range.");
+ }
+ }
+
+ if (Value *sparseValue = FindObject(obj, "sparse")) {
+ sparse.reset(new Sparse);
+ // count
+ ReadMember(*sparseValue, "count", sparse->count);
+
+ // indices
+ if (Value *indicesValue = FindObject(*sparseValue, "indices")) {
+ //indices bufferView
+ Value *indiceViewID = FindUInt(*indicesValue, "bufferView");
+ sparse->indices = r.bufferViews.Retrieve(indiceViewID->GetUint());
+ //indices byteOffset
+ sparse->indicesByteOffset = MemberOrDefault(*indicesValue, "byteOffset", size_t(0));
+ //indices componentType
+ sparse->indicesType = MemberOrDefault(*indicesValue, "componentType", ComponentType_BYTE);
+ //sparse->indices->Read(*indicesValue, r);
+ } else {
+ // indicesType
+ sparse->indicesType = MemberOrDefault(*sparseValue, "componentType", ComponentType_UNSIGNED_SHORT);
+ }
+
+ // value
+ if (Value *valuesValue = FindObject(*sparseValue, "values")) {
+ //value bufferView
+ Value *valueViewID = FindUInt(*valuesValue, "bufferView");
+ sparse->values = r.bufferViews.Retrieve(valueViewID->GetUint());
+ //value byteOffset
+ sparse->valuesByteOffset = MemberOrDefault(*valuesValue, "byteOffset", size_t(0));
+ //sparse->values->Read(*valuesValue, r);
+ }
+
+
+ const unsigned int elementSize = GetElementSize();
+ const size_t dataSize = count * elementSize;
+ sparse->PopulateData(dataSize, bufferView ? bufferView->GetPointer(byteOffset) : 0);
+ sparse->PatchData(elementSize);
+ }
+}
+
+inline unsigned int Accessor::GetNumComponents() {
+ return AttribType::GetNumComponents(type);
+}
+
+inline unsigned int Accessor::GetBytesPerComponent() {
+ return int(ComponentTypeSize(componentType));
+}
+
+inline unsigned int Accessor::GetElementSize() {
+ return GetNumComponents() * GetBytesPerComponent();
+}
+
+inline uint8_t *Accessor::GetPointer() {
+ if (decodedBuffer)
+ return decodedBuffer->GetPointer();
+
+ if (sparse)
+ return sparse->data.data();
+
+ if (!bufferView || !bufferView->buffer) return nullptr;
+ uint8_t *basePtr = bufferView->buffer->GetPointer();
+ if (!basePtr) return nullptr;
+
+ size_t offset = byteOffset + bufferView->byteOffset;
+
+ // Check if region is encoded.
+ if (bufferView->buffer->EncodedRegion_Current != nullptr) {
+ const size_t begin = bufferView->buffer->EncodedRegion_Current->Offset;
+ const size_t end = begin + bufferView->buffer->EncodedRegion_Current->DecodedData_Length;
+
+ if ((offset >= begin) && (offset < end))
+ return &bufferView->buffer->EncodedRegion_Current->DecodedData[offset - begin];
+ }
+
+ return basePtr + offset;
+}
+
+inline size_t Accessor::GetStride() {
+ // Decoded buffer is always packed
+ if (decodedBuffer)
+ return GetElementSize();
+
+ // Sparse and normal bufferView
+ return (bufferView && bufferView->byteStride ? bufferView->byteStride : GetElementSize());
+}
+
+inline size_t Accessor::GetMaxByteSize() {
+ if (decodedBuffer)
+ return decodedBuffer->byteLength;
+
+ return (bufferView ? bufferView->byteLength : sparse->data.size());
+}
+
+template <class T>
+void Accessor::ExtractData(T *&outData) {
+ uint8_t *data = GetPointer();
+ if (!data) {
+ throw DeadlyImportError("GLTF2: data is null when extracting data from ", getContextForErrorMessages(id, name));
+ }
+
+ const size_t elemSize = GetElementSize();
+ const size_t totalSize = elemSize * count;
+
+ const size_t stride = GetStride();
+
+ const size_t targetElemSize = sizeof(T);
+
+ if (elemSize > targetElemSize) {
+ throw DeadlyImportError("GLTF: elemSize ", elemSize, " > targetElemSize ", targetElemSize, " in ", getContextForErrorMessages(id, name));
+ }
+
+ const size_t maxSize = GetMaxByteSize();
+ if (count * stride > maxSize) {
+ throw DeadlyImportError("GLTF: count*stride ", (count * stride), " > maxSize ", maxSize, " in ", getContextForErrorMessages(id, name));
+ }
+
+ outData = new T[count];
+ if (stride == elemSize && targetElemSize == elemSize) {
+ memcpy(outData, data, totalSize);
+ } else {
+ for (size_t i = 0; i < count; ++i) {
+ memcpy(outData + i, data + i * stride, elemSize);
+ }
+ }
+}
+
+inline void Accessor::WriteData(size_t _count, const void *src_buffer, size_t src_stride) {
+ uint8_t *buffer_ptr = bufferView->buffer->GetPointer();
+ size_t offset = byteOffset + bufferView->byteOffset;
+
+ size_t dst_stride = GetNumComponents() * GetBytesPerComponent();
+
+ const uint8_t *src = reinterpret_cast<const uint8_t *>(src_buffer);
+ uint8_t *dst = reinterpret_cast<uint8_t *>(buffer_ptr + offset);
+
+ ai_assert(dst + _count * dst_stride <= buffer_ptr + bufferView->buffer->byteLength);
+ CopyData(_count, src, src_stride, dst, dst_stride);
+}
+
+inline void Accessor::WriteSparseValues(size_t _count, const void *src_data, size_t src_dataStride) {
+ if (!sparse)
+ return;
+
+ // values
+ uint8_t *value_buffer_ptr = sparse->values->buffer->GetPointer();
+ size_t value_offset = sparse->valuesByteOffset + sparse->values->byteOffset;
+ size_t value_dst_stride = GetNumComponents() * GetBytesPerComponent();
+ const uint8_t *value_src = reinterpret_cast<const uint8_t *>(src_data);
+ uint8_t *value_dst = reinterpret_cast<uint8_t *>(value_buffer_ptr + value_offset);
+ ai_assert(value_dst + _count * value_dst_stride <= value_buffer_ptr + sparse->values->buffer->byteLength);
+ CopyData(_count, value_src, src_dataStride, value_dst, value_dst_stride);
+}
+
+inline void Accessor::WriteSparseIndices(size_t _count, const void *src_idx, size_t src_idxStride) {
+ if (!sparse)
+ return;
+
+ // indices
+ uint8_t *indices_buffer_ptr = sparse->indices->buffer->GetPointer();
+ size_t indices_offset = sparse->indicesByteOffset + sparse->indices->byteOffset;
+ size_t indices_dst_stride = 1 * sizeof(unsigned short);
+ const uint8_t *indices_src = reinterpret_cast<const uint8_t *>(src_idx);
+ uint8_t *indices_dst = reinterpret_cast<uint8_t *>(indices_buffer_ptr + indices_offset);
+ ai_assert(indices_dst + _count * indices_dst_stride <= indices_buffer_ptr + sparse->indices->buffer->byteLength);
+ CopyData(_count, indices_src, src_idxStride, indices_dst, indices_dst_stride);
+}
+
+inline Accessor::Indexer::Indexer(Accessor &acc) :
+ accessor(acc),
+ data(acc.GetPointer()),
+ elemSize(acc.GetElementSize()),
+ stride(acc.GetStride()) {
+}
+
+//! Accesses the i-th value as defined by the accessor
+template <class T>
+T Accessor::Indexer::GetValue(int i) {
+ ai_assert(data);
+ if (i * stride >= accessor.GetMaxByteSize()) {
+ throw DeadlyImportError("GLTF: Invalid index ", i, ", count out of range for buffer with stride ", stride, " and size ", accessor.GetMaxByteSize(), ".");
+ }
+ // Ensure that the memcpy doesn't overwrite the local.
+ const size_t sizeToCopy = std::min(elemSize, sizeof(T));
+ T value = T();
+ // Assume platform endianness matches GLTF binary data (which is little-endian).
+ memcpy(&value, data + i * stride, sizeToCopy);
+ return value;
+}
+
+inline Image::Image() :
+ width(0),
+ height(0),
+ mDataLength(0) {
+}
+
+inline void Image::Read(Value &obj, Asset &r) {
+ //basisu: no need to handle .ktx2, .basis, load as is
+ if (!mDataLength) {
+ Value *curUri = FindString(obj, "uri");
+ if (nullptr != curUri) {
+ const char *uristr = curUri->GetString();
+
+ glTFCommon::Util::DataURI dataURI;
+ if (ParseDataURI(uristr, curUri->GetStringLength(), dataURI)) {
+ mimeType = dataURI.mediaType;
+ if (dataURI.base64) {
+ uint8_t *ptr = nullptr;
+ mDataLength = Base64::Decode(dataURI.data, dataURI.dataLength, ptr);
+ mData.reset(ptr);
+ }
+ } else {
+ this->uri = uristr;
+ }
+ } else if (Value *bufferViewVal = FindUInt(obj, "bufferView")) {
+ this->bufferView = r.bufferViews.Retrieve(bufferViewVal->GetUint());
+ if (Value *mtype = FindString(obj, "mimeType")) {
+ this->mimeType = mtype->GetString();
+ }
+ if (!this->bufferView || this->mimeType.empty()) {
+ throw DeadlyImportError("GLTF2: ", getContextForErrorMessages(id, name), " does not have a URI, so it must have a valid bufferView and mimetype");
+ }
+
+ Ref<Buffer> buffer = this->bufferView->buffer;
+
+ this->mDataLength = this->bufferView->byteLength;
+ // maybe this memcpy could be avoided if aiTexture does not delete[] pcData at destruction.
+
+ this->mData.reset(new uint8_t[this->mDataLength]);
+ memcpy(this->mData.get(), buffer->GetPointer() + this->bufferView->byteOffset, this->mDataLength);
+ } else {
+ throw DeadlyImportError("GLTF2: ", getContextForErrorMessages(id, name), " should have either a URI of a bufferView and mimetype");
+ }
+ }
+}
+
+inline uint8_t *Image::StealData() {
+ mDataLength = 0;
+ return mData.release();
+}
+
+// Never take over the ownership of data whenever binary or not
+inline void Image::SetData(uint8_t *data, size_t length, Asset &r) {
+ Ref<Buffer> b = r.GetBodyBuffer();
+ if (b) { // binary file: append to body
+ std::string bvId = r.FindUniqueID(this->id, "imgdata");
+ bufferView = r.bufferViews.Create(bvId);
+
+ bufferView->buffer = b;
+ bufferView->byteLength = length;
+ bufferView->byteOffset = b->AppendData(data, length);
+ } else { // text file: will be stored as a data uri
+ uint8_t *temp = new uint8_t[length];
+ memcpy(temp, data, length);
+ this->mData.reset(temp);
+ this->mDataLength = length;
+ }
+}
+
+inline void Sampler::Read(Value &obj, Asset & /*r*/) {
+ SetDefaults();
+
+ ReadMember(obj, "name", name);
+ ReadMember(obj, "magFilter", magFilter);
+ ReadMember(obj, "minFilter", minFilter);
+ ReadMember(obj, "wrapS", wrapS);
+ ReadMember(obj, "wrapT", wrapT);
+}
+
+inline void Sampler::SetDefaults() {
+ //only wrapping modes have defaults
+ wrapS = SamplerWrap::Repeat;
+ wrapT = SamplerWrap::Repeat;
+ magFilter = SamplerMagFilter::UNSET;
+ minFilter = SamplerMinFilter::UNSET;
+}
+
+inline void Texture::Read(Value &obj, Asset &r) {
+ if (Value *sourceVal = FindUInt(obj, "source")) {
+ source = r.images.Retrieve(sourceVal->GetUint());
+ }
+
+ if (Value *samplerVal = FindUInt(obj, "sampler")) {
+ sampler = r.samplers.Retrieve(samplerVal->GetUint());
+ }
+}
+
+void Material::SetTextureProperties(Asset &r, Value *prop, TextureInfo &out) {
+ if (r.extensionsUsed.KHR_texture_transform) {
+ if (Value *pKHR_texture_transform = FindExtension(*prop, "KHR_texture_transform")) {
+ out.textureTransformSupported = true;
+ if (Value *array = FindArray(*pKHR_texture_transform, "offset")) {
+ out.TextureTransformExt_t.offset[0] = (*array)[0].GetFloat();
+ out.TextureTransformExt_t.offset[1] = (*array)[1].GetFloat();
+ } else {
+ out.TextureTransformExt_t.offset[0] = 0;
+ out.TextureTransformExt_t.offset[1] = 0;
+ }
+
+ if (!ReadMember(*pKHR_texture_transform, "rotation", out.TextureTransformExt_t.rotation)) {
+ out.TextureTransformExt_t.rotation = 0;
+ }
+
+ if (Value *array = FindArray(*pKHR_texture_transform, "scale")) {
+ out.TextureTransformExt_t.scale[0] = (*array)[0].GetFloat();
+ out.TextureTransformExt_t.scale[1] = (*array)[1].GetFloat();
+ } else {
+ out.TextureTransformExt_t.scale[0] = 1;
+ out.TextureTransformExt_t.scale[1] = 1;
+ }
+ }
+ }
+
+ if (Value *indexProp = FindUInt(*prop, "index")) {
+ out.texture = r.textures.Retrieve(indexProp->GetUint());
+ }
+
+ if (Value *texcoord = FindUInt(*prop, "texCoord")) {
+ out.texCoord = texcoord->GetUint();
+ }
+}
+
+inline void Material::ReadTextureProperty(Asset &r, Value &vals, const char *propName, TextureInfo &out) {
+ if (Value *prop = FindMember(vals, propName)) {
+ SetTextureProperties(r, prop, out);
+ }
+}
+
+inline void Material::ReadTextureProperty(Asset &r, Value &vals, const char *propName, NormalTextureInfo &out) {
+ if (Value *prop = FindMember(vals, propName)) {
+ SetTextureProperties(r, prop, out);
+
+ if (Value *scale = FindNumber(*prop, "scale")) {
+ out.scale = static_cast<float>(scale->GetDouble());
+ }
+ }
+}
+
+inline void Material::ReadTextureProperty(Asset &r, Value &vals, const char *propName, OcclusionTextureInfo &out) {
+ if (Value *prop = FindMember(vals, propName)) {
+ SetTextureProperties(r, prop, out);
+
+ if (Value *strength = FindNumber(*prop, "strength")) {
+ out.strength = static_cast<float>(strength->GetDouble());
+ }
+ }
+}
+
+inline void Material::Read(Value &material, Asset &r) {
+ SetDefaults();
+
+ if (Value *curPbrMetallicRoughness = FindObject(material, "pbrMetallicRoughness")) {
+ ReadMember(*curPbrMetallicRoughness, "baseColorFactor", this->pbrMetallicRoughness.baseColorFactor);
+ ReadTextureProperty(r, *curPbrMetallicRoughness, "baseColorTexture", this->pbrMetallicRoughness.baseColorTexture);
+ ReadTextureProperty(r, *curPbrMetallicRoughness, "metallicRoughnessTexture", this->pbrMetallicRoughness.metallicRoughnessTexture);
+ ReadMember(*curPbrMetallicRoughness, "metallicFactor", this->pbrMetallicRoughness.metallicFactor);
+ ReadMember(*curPbrMetallicRoughness, "roughnessFactor", this->pbrMetallicRoughness.roughnessFactor);
+ }
+
+ ReadTextureProperty(r, material, "normalTexture", this->normalTexture);
+ ReadTextureProperty(r, material, "occlusionTexture", this->occlusionTexture);
+ ReadTextureProperty(r, material, "emissiveTexture", this->emissiveTexture);
+ ReadMember(material, "emissiveFactor", this->emissiveFactor);
+
+ ReadMember(material, "doubleSided", this->doubleSided);
+ ReadMember(material, "alphaMode", this->alphaMode);
+ ReadMember(material, "alphaCutoff", this->alphaCutoff);
+
+ if (Value *extensions = FindObject(material, "extensions")) {
+ if (r.extensionsUsed.KHR_materials_pbrSpecularGlossiness) {
+ if (Value *curPbrSpecularGlossiness = FindObject(*extensions, "KHR_materials_pbrSpecularGlossiness")) {
+ PbrSpecularGlossiness pbrSG;
+
+ ReadMember(*curPbrSpecularGlossiness, "diffuseFactor", pbrSG.diffuseFactor);
+ ReadTextureProperty(r, *curPbrSpecularGlossiness, "diffuseTexture", pbrSG.diffuseTexture);
+ ReadTextureProperty(r, *curPbrSpecularGlossiness, "specularGlossinessTexture", pbrSG.specularGlossinessTexture);
+ ReadMember(*curPbrSpecularGlossiness, "specularFactor", pbrSG.specularFactor);
+ ReadMember(*curPbrSpecularGlossiness, "glossinessFactor", pbrSG.glossinessFactor);
+
+ this->pbrSpecularGlossiness = Nullable<PbrSpecularGlossiness>(pbrSG);
+ }
+ }
+
+ // Extension KHR_texture_transform is handled in ReadTextureProperty
+
+ if (r.extensionsUsed.KHR_materials_sheen) {
+ if (Value *curMaterialSheen = FindObject(*extensions, "KHR_materials_sheen")) {
+ MaterialSheen sheen;
+
+ ReadMember(*curMaterialSheen, "sheenColorFactor", sheen.sheenColorFactor);
+ ReadTextureProperty(r, *curMaterialSheen, "sheenColorTexture", sheen.sheenColorTexture);
+ ReadMember(*curMaterialSheen, "sheenRoughnessFactor", sheen.sheenRoughnessFactor);
+ ReadTextureProperty(r, *curMaterialSheen, "sheenRoughnessTexture", sheen.sheenRoughnessTexture);
+
+ this->materialSheen = Nullable<MaterialSheen>(sheen);
+ }
+ }
+
+ if (r.extensionsUsed.KHR_materials_clearcoat) {
+ if (Value *curMaterialClearcoat = FindObject(*extensions, "KHR_materials_clearcoat")) {
+ MaterialClearcoat clearcoat;
+
+ ReadMember(*curMaterialClearcoat, "clearcoatFactor", clearcoat.clearcoatFactor);
+ ReadTextureProperty(r, *curMaterialClearcoat, "clearcoatTexture", clearcoat.clearcoatTexture);
+ ReadMember(*curMaterialClearcoat, "clearcoatRoughnessFactor", clearcoat.clearcoatRoughnessFactor);
+ ReadTextureProperty(r, *curMaterialClearcoat, "clearcoatRoughnessTexture", clearcoat.clearcoatRoughnessTexture);
+ ReadTextureProperty(r, *curMaterialClearcoat, "clearcoatNormalTexture", clearcoat.clearcoatNormalTexture);
+
+ this->materialClearcoat = Nullable<MaterialClearcoat>(clearcoat);
+ }
+ }
+
+ if (r.extensionsUsed.KHR_materials_transmission) {
+ if (Value *curMaterialTransmission = FindObject(*extensions, "KHR_materials_transmission")) {
+ MaterialTransmission transmission;
+
+ ReadMember(*curMaterialTransmission, "transmissionFactor", transmission.transmissionFactor);
+ ReadTextureProperty(r, *curMaterialTransmission, "transmissionTexture", transmission.transmissionTexture);
+
+ this->materialTransmission = Nullable<MaterialTransmission>(transmission);
+ }
+ }
+
+ if (r.extensionsUsed.KHR_materials_volume) {
+ if (Value *curMaterialVolume = FindObject(*extensions, "KHR_materials_volume")) {
+ MaterialVolume volume;
+
+ ReadMember(*curMaterialVolume, "thicknessFactor", volume.thicknessFactor);
+ ReadTextureProperty(r, *curMaterialVolume, "thicknessTexture", volume.thicknessTexture);
+ ReadMember(*curMaterialVolume, "attenuationDistance", volume.attenuationDistance);
+ ReadMember(*curMaterialVolume, "attenuationColor", volume.attenuationColor);
+
+ this->materialVolume = Nullable<MaterialVolume>(volume);
+ }
+ }
+
+ if (r.extensionsUsed.KHR_materials_ior) {
+ if (Value *curMaterialIOR = FindObject(*extensions, "KHR_materials_ior")) {
+ MaterialIOR ior;
+
+ ReadMember(*curMaterialIOR, "ior", ior.ior);
+
+ this->materialIOR = Nullable<MaterialIOR>(ior);
+ }
+ }
+
+ unlit = nullptr != FindObject(*extensions, "KHR_materials_unlit");
+ }
+}
+
+inline void Material::SetDefaults() {
+ //pbr materials
+ SetVector(pbrMetallicRoughness.baseColorFactor, defaultBaseColor);
+ pbrMetallicRoughness.metallicFactor = 1.0f;
+ pbrMetallicRoughness.roughnessFactor = 1.0f;
+
+ SetVector(emissiveFactor, defaultEmissiveFactor);
+ alphaMode = "OPAQUE";
+ alphaCutoff = 0.5f;
+ doubleSided = false;
+ unlit = false;
+}
+
+inline void PbrSpecularGlossiness::SetDefaults() {
+ //pbrSpecularGlossiness properties
+ SetVector(diffuseFactor, defaultDiffuseFactor);
+ SetVector(specularFactor, defaultSpecularFactor);
+ glossinessFactor = 1.0f;
+}
+
+inline void MaterialSheen::SetDefaults() {
+ //KHR_materials_sheen properties
+ SetVector(sheenColorFactor, defaultSheenFactor);
+ sheenRoughnessFactor = 0.f;
+}
+
+inline void MaterialVolume::SetDefaults() {
+ //KHR_materials_volume properties
+ thicknessFactor = 0.f;
+ attenuationDistance = INFINITY;
+ SetVector(attenuationColor, defaultAttenuationColor);
+}
+
+inline void MaterialIOR::SetDefaults() {
+ //KHR_materials_ior properties
+ ior = 1.5f;
+}
+
+inline void Mesh::Read(Value &pJSON_Object, Asset &pAsset_Root) {
+ Value *curName = FindMember(pJSON_Object, "name");
+ if (nullptr != curName && curName->IsString()) {
+ name = curName->GetString();
+ }
+
+ /****************** Mesh primitives ******************/
+ Value *curPrimitives = FindArray(pJSON_Object, "primitives");
+ if (nullptr != curPrimitives) {
+ this->primitives.resize(curPrimitives->Size());
+ for (unsigned int i = 0; i < curPrimitives->Size(); ++i) {
+ Value &primitive = (*curPrimitives)[i];
+
+ Primitive &prim = this->primitives[i];
+ prim.mode = MemberOrDefault(primitive, "mode", PrimitiveMode_TRIANGLES);
+
+ if (Value *indices = FindUInt(primitive, "indices")) {
+ prim.indices = pAsset_Root.accessors.Retrieve(indices->GetUint());
+ }
+
+ if (Value *material = FindUInt(primitive, "material")) {
+ prim.material = pAsset_Root.materials.Retrieve(material->GetUint());
+ }
+
+ if (Value *attrs = FindObject(primitive, "attributes")) {
+ for (Value::MemberIterator it = attrs->MemberBegin(); it != attrs->MemberEnd(); ++it) {
+ if (!it->value.IsUint()) continue;
+ const char *attr = it->name.GetString();
+ // Valid attribute semantics include POSITION, NORMAL, TANGENT, TEXCOORD, COLOR, JOINT, JOINTMATRIX,
+ // and WEIGHT.Attribute semantics can be of the form[semantic]_[set_index], e.g., TEXCOORD_0, TEXCOORD_1, etc.
+
+ int undPos = 0;
+ Mesh::AccessorList *vec = nullptr;
+ if (GetAttribVector(prim, attr, vec, undPos)) {
+ size_t idx = (attr[undPos] == '_') ? atoi(attr + undPos + 1) : 0;
+ if ((*vec).size() != idx) {
+ throw DeadlyImportError("GLTF: Invalid attribute in mesh: ", name, " primitive: ", i, "attrib: ", attr,
+ ". All indices for indexed attribute semantics must start with 0 and be continuous positive integers: TEXCOORD_0, TEXCOORD_1, etc.");
+ }
+ (*vec).resize(idx + 1);
+ (*vec)[idx] = pAsset_Root.accessors.Retrieve(it->value.GetUint());
+ }
+ }
+ }
+
+#ifdef ASSIMP_ENABLE_DRACO
+ // KHR_draco_mesh_compression spec: Draco can only be used for glTF Triangles or Triangle Strips
+ if (pAsset_Root.extensionsUsed.KHR_draco_mesh_compression && (prim.mode == PrimitiveMode_TRIANGLES || prim.mode == PrimitiveMode_TRIANGLE_STRIP)) {
+ // Look for draco mesh compression extension and bufferView
+ // Skip if any missing
+ if (Value *dracoExt = FindExtension(primitive, "KHR_draco_mesh_compression")) {
+ if (Value *bufView = FindUInt(*dracoExt, "bufferView")) {
+ // Attempt to load indices and attributes using draco compression
+ auto bufferView = pAsset_Root.bufferViews.Retrieve(bufView->GetUint());
+ // Attempt to perform the draco decode on the buffer data
+ const char *bufferViewData = reinterpret_cast<const char *>(bufferView->buffer->GetPointer() + bufferView->byteOffset);
+ draco::DecoderBuffer decoderBuffer;
+ decoderBuffer.Init(bufferViewData, bufferView->byteLength);
+ draco::Decoder decoder;
+ auto decodeResult = decoder.DecodeMeshFromBuffer(&decoderBuffer);
+ if (!decodeResult.ok()) {
+ // A corrupt Draco isn't actually fatal if the primitive data is also provided in a standard buffer, but does anyone do that?
+ throw DeadlyImportError("GLTF: Invalid Draco mesh compression in mesh: ", name, " primitive: ", i, ": ", decodeResult.status().error_msg_string());
+ }
+
+ // Now we have a draco mesh
+ const std::unique_ptr<draco::Mesh> &pDracoMesh = decodeResult.value();
+
+ // Redirect the accessors to the decoded data
+
+ // Indices
+ SetDecodedIndexBuffer_Draco(*pDracoMesh, prim);
+
+ // Vertex attributes
+ if (Value *attrs = FindObject(*dracoExt, "attributes")) {
+ for (Value::MemberIterator it = attrs->MemberBegin(); it != attrs->MemberEnd(); ++it) {
+ if (!it->value.IsUint()) continue;
+ const char *attr = it->name.GetString();
+
+ int undPos = 0;
+ Mesh::AccessorList *vec = nullptr;
+ if (GetAttribVector(prim, attr, vec, undPos)) {
+ size_t idx = (attr[undPos] == '_') ? atoi(attr + undPos + 1) : 0;
+ if (idx >= (*vec).size()) {
+ throw DeadlyImportError("GLTF: Invalid draco attribute in mesh: ", name, " primitive: ", i, " attrib: ", attr,
+ ". All indices for indexed attribute semantics must start with 0 and be continuous positive integers: TEXCOORD_0, TEXCOORD_1, etc.");
+ }
+
+ if (!(*vec)[idx]) {
+ throw DeadlyImportError("GLTF: Invalid draco attribute in mesh: ", name, " primitive: ", i, " attrib: ", attr,
+ ". All draco-encoded attributes must also define an accessor.");
+ }
+
+ Accessor &attribAccessor = *(*vec)[idx];
+ if (attribAccessor.count == 0)
+ throw DeadlyImportError("GLTF: Invalid draco attribute in mesh: ", name, " primitive: ", i, " attrib: ", attr);
+
+ // Redirect this accessor to the appropriate Draco vertex attribute data
+ const uint32_t dracoAttribId = it->value.GetUint();
+ SetDecodedAttributeBuffer_Draco(*pDracoMesh, dracoAttribId, attribAccessor);
+ }
+ }
+ }
+ }
+ }
+ }
+#endif
+
+ Value *targetsArray = FindArray(primitive, "targets");
+ if (nullptr != targetsArray) {
+ prim.targets.resize(targetsArray->Size());
+ for (unsigned int j = 0; j < targetsArray->Size(); ++j) {
+ Value &target = (*targetsArray)[j];
+ if (!target.IsObject()) {
+ continue;
+ }
+ for (Value::MemberIterator it = target.MemberBegin(); it != target.MemberEnd(); ++it) {
+ if (!it->value.IsUint()) {
+ continue;
+ }
+ const char *attr = it->name.GetString();
+ // Valid attribute semantics include POSITION, NORMAL, TANGENT
+ int undPos = 0;
+ Mesh::AccessorList *vec = nullptr;
+ if (GetAttribTargetVector(prim, j, attr, vec, undPos)) {
+ size_t idx = (attr[undPos] == '_') ? atoi(attr + undPos + 1) : 0;
+ if ((*vec).size() <= idx) {
+ (*vec).resize(idx + 1);
+ }
+ (*vec)[idx] = pAsset_Root.accessors.Retrieve(it->value.GetUint());
+ }
+ }
+ }
+ }
+ }
+ }
+
+ Value *curWeights = FindArray(pJSON_Object, "weights");
+ if (nullptr != curWeights) {
+ this->weights.resize(curWeights->Size());
+ for (unsigned int i = 0; i < curWeights->Size(); ++i) {
+ Value &weightValue = (*curWeights)[i];
+ if (weightValue.IsNumber()) {
+ this->weights[i] = weightValue.GetFloat();
+ }
+ }
+ }
+
+ Value *curExtras = FindObject(pJSON_Object, "extras");
+ if (nullptr != curExtras) {
+ if (Value *curTargetNames = FindArray(*curExtras, "targetNames")) {
+ this->targetNames.resize(curTargetNames->Size());
+ for (unsigned int i = 0; i < curTargetNames->Size(); ++i) {
+ Value &targetNameValue = (*curTargetNames)[i];
+ if (targetNameValue.IsString()) {
+ this->targetNames[i] = targetNameValue.GetString();
+ }
+ }
+ }
+ }
+}
+
+inline void Camera::Read(Value &obj, Asset & /*r*/) {
+ std::string type_string = std::string(MemberOrDefault(obj, "type", "perspective"));
+ if (type_string == "orthographic") {
+ type = Camera::Orthographic;
+ } else {
+ type = Camera::Perspective;
+ }
+
+ const char *subobjId = (type == Camera::Orthographic) ? "orthographic" : "perspective";
+
+ Value *it = FindObject(obj, subobjId);
+ if (!it) throw DeadlyImportError("GLTF: Camera missing its parameters");
+
+ if (type == Camera::Perspective) {
+ cameraProperties.perspective.aspectRatio = MemberOrDefault(*it, "aspectRatio", 0.f);
+ cameraProperties.perspective.yfov = MemberOrDefault(*it, "yfov", 3.1415f / 2.f);
+ cameraProperties.perspective.zfar = MemberOrDefault(*it, "zfar", 100.f);
+ cameraProperties.perspective.znear = MemberOrDefault(*it, "znear", 0.01f);
+ } else {
+ cameraProperties.ortographic.xmag = MemberOrDefault(*it, "xmag", 1.f);
+ cameraProperties.ortographic.ymag = MemberOrDefault(*it, "ymag", 1.f);
+ cameraProperties.ortographic.zfar = MemberOrDefault(*it, "zfar", 100.f);
+ cameraProperties.ortographic.znear = MemberOrDefault(*it, "znear", 0.01f);
+ }
+}
+
+inline void Light::Read(Value &obj, Asset & /*r*/) {
+#ifndef M_PI
+ const float M_PI = 3.14159265358979323846f;
+#endif
+
+ std::string type_string;
+ ReadMember(obj, "type", type_string);
+ if (type_string == "directional")
+ type = Light::Directional;
+ else if (type_string == "point")
+ type = Light::Point;
+ else
+ type = Light::Spot;
+
+ name = MemberOrDefault(obj, "name", "");
+
+ SetVector(color, vec3{ 1.0f, 1.0f, 1.0f });
+ ReadMember(obj, "color", color);
+
+ intensity = MemberOrDefault(obj, "intensity", 1.0f);
+
+ ReadMember(obj, "range", range);
+
+ if (type == Light::Spot) {
+ Value *spot = FindObject(obj, "spot");
+ if (!spot) throw DeadlyImportError("GLTF: Light missing its spot parameters");
+ innerConeAngle = MemberOrDefault(*spot, "innerConeAngle", 0.0f);
+ outerConeAngle = MemberOrDefault(*spot, "outerConeAngle", static_cast<float>(M_PI / 4.0f));
+ }
+}
+
+inline void Node::Read(Value &obj, Asset &r) {
+ if (name.empty()) {
+ name = id;
+ }
+
+ Value *curChildren = FindArray(obj, "children");
+ if (nullptr != curChildren) {
+ this->children.reserve(curChildren->Size());
+ for (unsigned int i = 0; i < curChildren->Size(); ++i) {
+ Value &child = (*curChildren)[i];
+ if (child.IsUint()) {
+ // get/create the child node
+ Ref<Node> chn = r.nodes.Retrieve(child.GetUint());
+ if (chn) {
+ this->children.push_back(chn);
+ }
+ }
+ }
+ }
+
+ Value *curMatrix = FindArray(obj, "matrix");
+ if (nullptr != curMatrix) {
+ ReadValue(*curMatrix, this->matrix);
+ } else {
+ ReadMember(obj, "translation", translation);
+ ReadMember(obj, "scale", scale);
+ ReadMember(obj, "rotation", rotation);
+ }
+
+ Value *curMesh = FindUInt(obj, "mesh");
+ if (nullptr != curMesh) {
+ unsigned int numMeshes = 1;
+ this->meshes.reserve(numMeshes);
+ Ref<Mesh> meshRef = r.meshes.Retrieve((*curMesh).GetUint());
+ if (meshRef) {
+ this->meshes.push_back(meshRef);
+ }
+ }
+
+ // Do not retrieve a skin here, just take a reference, to avoid infinite recursion
+ // Skins will be properly loaded later
+ Value *curSkin = FindUInt(obj, "skin");
+ if (nullptr != curSkin) {
+ this->skin = r.skins.Get(curSkin->GetUint());
+ }
+
+ Value *curCamera = FindUInt(obj, "camera");
+ if (nullptr != curCamera) {
+ this->camera = r.cameras.Retrieve(curCamera->GetUint());
+ if (this->camera) {
+ this->camera->id = this->id;
+ }
+ }
+
+ Value *curExtensions = FindObject(obj, "extensions");
+ if (nullptr != curExtensions) {
+ if (r.extensionsUsed.KHR_lights_punctual) {
+ if (Value *ext = FindObject(*curExtensions, "KHR_lights_punctual")) {
+ Value *curLight = FindUInt(*ext, "light");
+ if (nullptr != curLight) {
+ this->light = r.lights.Retrieve(curLight->GetUint());
+ if (this->light) {
+ this->light->id = this->id;
+ }
+ }
+ }
+ }
+ }
+}
+
+inline void Scene::Read(Value &obj, Asset &r) {
+ if (Value *scene_name = FindString(obj, "name")) {
+ if (scene_name->IsString()) {
+ this->name = scene_name->GetString();
+ }
+ }
+ if (Value *array = FindArray(obj, "nodes")) {
+ for (unsigned int i = 0; i < array->Size(); ++i) {
+ if (!(*array)[i].IsUint()) continue;
+ Ref<Node> node = r.nodes.Retrieve((*array)[i].GetUint());
+ if (node)
+ this->nodes.push_back(node);
+ }
+ }
+}
+
+inline void Skin::Read(Value &obj, Asset &r) {
+ if (Value *matrices = FindUInt(obj, "inverseBindMatrices")) {
+ inverseBindMatrices = r.accessors.Retrieve(matrices->GetUint());
+ }
+
+ if (Value *joints = FindArray(obj, "joints")) {
+ for (unsigned i = 0; i < joints->Size(); ++i) {
+ if (!(*joints)[i].IsUint()) continue;
+ Ref<Node> node = r.nodes.Retrieve((*joints)[i].GetUint());
+ if (node) {
+ this->jointNames.push_back(node);
+ }
+ }
+ }
+}
+
+inline void Animation::Read(Value &obj, Asset &r) {
+ Value *curSamplers = FindArray(obj, "samplers");
+ if (nullptr != curSamplers) {
+ for (unsigned i = 0; i < curSamplers->Size(); ++i) {
+ Value &sampler = (*curSamplers)[i];
+
+ Sampler s;
+ if (Value *input = FindUInt(sampler, "input")) {
+ s.input = r.accessors.Retrieve(input->GetUint());
+ }
+ if (Value *output = FindUInt(sampler, "output")) {
+ s.output = r.accessors.Retrieve(output->GetUint());
+ }
+ s.interpolation = Interpolation_LINEAR;
+ if (Value *interpolation = FindString(sampler, "interpolation")) {
+ const std::string interp = interpolation->GetString();
+ if (interp == "LINEAR") {
+ s.interpolation = Interpolation_LINEAR;
+ } else if (interp == "STEP") {
+ s.interpolation = Interpolation_STEP;
+ } else if (interp == "CUBICSPLINE") {
+ s.interpolation = Interpolation_CUBICSPLINE;
+ }
+ }
+ this->samplers.push_back(s);
+ }
+ }
+
+ Value *curChannels = FindArray(obj, "channels");
+ if (nullptr != curChannels) {
+ for (unsigned i = 0; i < curChannels->Size(); ++i) {
+ Value &channel = (*curChannels)[i];
+
+ Channel c;
+ Value *curSampler = FindUInt(channel, "sampler");
+ if (nullptr != curSampler) {
+ c.sampler = curSampler->GetUint();
+ }
+
+ if (Value *target = FindObject(channel, "target")) {
+ if (Value *node = FindUInt(*target, "node")) {
+ c.target.node = r.nodes.Retrieve(node->GetUint());
+ }
+ if (Value *path = FindString(*target, "path")) {
+ const std::string p = path->GetString();
+ if (p == "translation") {
+ c.target.path = AnimationPath_TRANSLATION;
+ } else if (p == "rotation") {
+ c.target.path = AnimationPath_ROTATION;
+ } else if (p == "scale") {
+ c.target.path = AnimationPath_SCALE;
+ } else if (p == "weights") {
+ c.target.path = AnimationPath_WEIGHTS;
+ }
+ }
+ }
+ this->channels.push_back(c);
+ }
+ }
+}
+
+inline void AssetMetadata::Read(Document &doc) {
+ if (Value *obj = FindObject(doc, "asset")) {
+ ReadMember(*obj, "copyright", copyright);
+ ReadMember(*obj, "generator", generator);
+
+ if (Value *versionString = FindStringInContext(*obj, "version", "\"asset\"")) {
+ version = versionString->GetString();
+ }
+ Value *curProfile = FindObjectInContext(*obj, "profile", "\"asset\"");
+ if (nullptr != curProfile) {
+ ReadMember(*curProfile, "api", this->profile.api);
+ ReadMember(*curProfile, "version", this->profile.version);
+ }
+ }
+
+ if (version.empty() || version[0] != '2') {
+ throw DeadlyImportError("GLTF: Unsupported glTF version: ", version);
+ }
+}
+
+//
+// Asset methods implementation
+//
+
+inline void Asset::ReadBinaryHeader(IOStream &stream, std::vector<char> &sceneData) {
+ ASSIMP_LOG_DEBUG("Reading GLTF2 binary");
+ GLB_Header header;
+ if (stream.Read(&header, sizeof(header), 1) != 1) {
+ throw DeadlyImportError("GLTF: Unable to read the file header");
+ }
+
+ if (strncmp((char *)header.magic, AI_GLB_MAGIC_NUMBER, sizeof(header.magic)) != 0) {
+ throw DeadlyImportError("GLTF: Invalid binary glTF file");
+ }
+
+ AI_SWAP4(header.version);
+ asset.version = ai_to_string(header.version);
+ if (header.version != 2) {
+ throw DeadlyImportError("GLTF: Unsupported binary glTF version");
+ }
+
+ GLB_Chunk chunk;
+ if (stream.Read(&chunk, sizeof(chunk), 1) != 1) {
+ throw DeadlyImportError("GLTF: Unable to read JSON chunk");
+ }
+
+ AI_SWAP4(chunk.chunkLength);
+ AI_SWAP4(chunk.chunkType);
+
+ if (chunk.chunkType != ChunkType_JSON) {
+ throw DeadlyImportError("GLTF: JSON chunk missing");
+ }
+
+ // read the scene data, ensure null termination
+ static_assert(std::numeric_limits<uint32_t>::max() <= std::numeric_limits<size_t>::max(), "size_t must be at least 32bits");
+ mSceneLength = chunk.chunkLength; // Can't be larger than 4GB (max. uint32_t)
+ sceneData.resize(mSceneLength + 1);
+ sceneData[mSceneLength] = '\0';
+
+ if (stream.Read(&sceneData[0], 1, mSceneLength) != mSceneLength) {
+ throw DeadlyImportError("GLTF: Could not read the file contents");
+ }
+
+ uint32_t padding = ((chunk.chunkLength + 3) & ~3) - chunk.chunkLength;
+ if (padding > 0) {
+ stream.Seek(padding, aiOrigin_CUR);
+ }
+
+ AI_SWAP4(header.length);
+ mBodyOffset = 12 + 8 + chunk.chunkLength + padding + 8;
+ if (header.length >= mBodyOffset) {
+ if (stream.Read(&chunk, sizeof(chunk), 1) != 1) {
+ throw DeadlyImportError("GLTF: Unable to read BIN chunk");
+ }
+
+ AI_SWAP4(chunk.chunkLength);
+ AI_SWAP4(chunk.chunkType);
+
+ if (chunk.chunkType != ChunkType_BIN) {
+ throw DeadlyImportError("GLTF: BIN chunk missing");
+ }
+
+ mBodyLength = chunk.chunkLength;
+ } else {
+ mBodyOffset = mBodyLength = 0;
+ }
+}
+
+inline rapidjson::Document Asset::ReadDocument(IOStream &stream, bool isBinary, std::vector<char> &sceneData) {
+ ASSIMP_LOG_DEBUG("Loading GLTF2 asset");
+
+ // is binary? then read the header
+ if (isBinary) {
+ SetAsBinary(); // also creates the body buffer
+ ReadBinaryHeader(stream, sceneData);
+ } else {
+ mSceneLength = stream.FileSize();
+ mBodyLength = 0;
+
+ // Binary format only supports up to 4GB of JSON, use that as a maximum
+ if (mSceneLength >= std::numeric_limits<uint32_t>::max()) {
+ throw DeadlyImportError("GLTF: JSON size greater than 4GB");
+ }
+
+ // read the scene data, ensure null termination
+ sceneData.resize(mSceneLength + 1);
+ sceneData[mSceneLength] = '\0';
+
+ if (stream.Read(&sceneData[0], 1, mSceneLength) != mSceneLength) {
+ throw DeadlyImportError("GLTF: Could not read the file contents");
+ }
+ }
+
+ // Smallest legal JSON file is "{}" Smallest loadable glTF file is larger than that but catch it later
+ if (mSceneLength < 2) {
+ throw DeadlyImportError("GLTF: No JSON file contents");
+ }
+
+ // parse the JSON document
+ ASSIMP_LOG_DEBUG("Parsing GLTF2 JSON");
+ Document doc;
+ doc.ParseInsitu(&sceneData[0]);
+
+ if (doc.HasParseError()) {
+ char buffer[32];
+ ai_snprintf(buffer, 32, "%d", static_cast<int>(doc.GetErrorOffset()));
+ throw DeadlyImportError("GLTF: JSON parse error, offset ", buffer, ": ", GetParseError_En(doc.GetParseError()));
+ }
+
+ if (!doc.IsObject()) {
+ throw DeadlyImportError("GLTF: JSON document root must be a JSON object");
+ }
+
+ return doc;
+}
+
+inline void Asset::Load(const std::string &pFile, bool isBinary)
+{
+ mCurrentAssetDir.clear();
+ if (0 != strncmp(pFile.c_str(), AI_MEMORYIO_MAGIC_FILENAME, AI_MEMORYIO_MAGIC_FILENAME_LENGTH)) {
+ mCurrentAssetDir = glTFCommon::getCurrentAssetDir(pFile);
+ }
+
+ shared_ptr<IOStream> stream(OpenFile(pFile.c_str(), "rb", true));
+ if (!stream) {
+ throw DeadlyImportError("GLTF: Could not open file for reading");
+ }
+
+ std::vector<char> sceneData;
+ rapidjson::Document doc = ReadDocument(*stream, isBinary, sceneData);
+
+ // If a schemaDocumentProvider is available, see if the glTF schema is present.
+ // If so, use it to validate the document.
+ if (mSchemaDocumentProvider) {
+ if (const rapidjson::SchemaDocument *gltfSchema = mSchemaDocumentProvider->GetRemoteDocument("glTF.schema.json", 16)) {
+ // The schemas are found here: https://github.com/KhronosGroup/glTF/tree/main/specification/2.0/schema
+ rapidjson::SchemaValidator validator(*gltfSchema);
+ if (!doc.Accept(validator)) {
+ rapidjson::StringBuffer pathBuffer;
+ validator.GetInvalidSchemaPointer().StringifyUriFragment(pathBuffer);
+ rapidjson::StringBuffer argumentBuffer;
+ validator.GetInvalidDocumentPointer().StringifyUriFragment(argumentBuffer);
+ throw DeadlyImportError("GLTF: The JSON document did not satisfy the glTF2 schema. Schema keyword: ", validator.GetInvalidSchemaKeyword(), ", document path: ", pathBuffer.GetString(), ", argument: ", argumentBuffer.GetString());
+ }
+ }
+ }
+
+ // Fill the buffer instance for the current file embedded contents
+ if (mBodyLength > 0) {
+ if (!mBodyBuffer->LoadFromStream(*stream, mBodyLength, mBodyOffset)) {
+ throw DeadlyImportError("GLTF: Unable to read gltf file");
+ }
+ }
+
+ // Load the metadata
+ asset.Read(doc);
+ ReadExtensionsUsed(doc);
+ ReadExtensionsRequired(doc);
+
+#ifndef ASSIMP_ENABLE_DRACO
+ // Is Draco required?
+ if (extensionsRequired.KHR_draco_mesh_compression) {
+ throw DeadlyImportError("GLTF: Draco mesh compression not supported.");
+ }
+#endif
+
+ // Prepare the dictionaries
+ for (size_t i = 0; i < mDicts.size(); ++i) {
+ mDicts[i]->AttachToDocument(doc);
+ }
+
+ // Read the "scene" property, which specifies which scene to load
+ // and recursively load everything referenced by it
+ unsigned int sceneIndex = 0;
+ Value *curScene = FindUInt(doc, "scene");
+ if (nullptr != curScene) {
+ sceneIndex = curScene->GetUint();
+ }
+
+ if (Value *scenesArray = FindArray(doc, "scenes")) {
+ if (sceneIndex < scenesArray->Size()) {
+ this->scene = scenes.Retrieve(sceneIndex);
+ }
+ }
+
+ if (Value *skinsArray = FindArray(doc, "skins")) {
+ for (unsigned int i = 0; i < skinsArray->Size(); ++i) {
+ skins.Retrieve(i);
+ }
+ }
+
+ if (Value *animsArray = FindArray(doc, "animations")) {
+ for (unsigned int i = 0; i < animsArray->Size(); ++i) {
+ animations.Retrieve(i);
+ }
+ }
+
+ // Clean up
+ for (size_t i = 0; i < mDicts.size(); ++i) {
+ mDicts[i]->DetachFromDocument();
+ }
+}
+
+inline bool Asset::CanRead(const std::string &pFile, bool isBinary) {
+ try {
+ shared_ptr<IOStream> stream(OpenFile(pFile.c_str(), "rb", true));
+ if (!stream) {
+ return false;
+ }
+ std::vector<char> sceneData;
+ rapidjson::Document doc = ReadDocument(*stream, isBinary, sceneData);
+ asset.Read(doc);
+ } catch (...) {
+ return false;
+ }
+ return true;
+}
+
+inline void Asset::SetAsBinary() {
+ if (!mBodyBuffer) {
+ mBodyBuffer = buffers.Create("binary_glTF");
+ mBodyBuffer->MarkAsSpecial();
+ }
+}
+
+// As required extensions are only a concept in glTF 2.0, this is here
+// instead of glTFCommon.h
+#define CHECK_REQUIRED_EXT(EXT) \
+ if (exts.find(#EXT) != exts.end()) extensionsRequired.EXT = true;
+
+inline void Asset::ReadExtensionsRequired(Document &doc) {
+ Value *extsRequired = FindArray(doc, "extensionsRequired");
+ if (nullptr == extsRequired) {
+ return;
+ }
+
+ std::gltf_unordered_map<std::string, bool> exts;
+ for (unsigned int i = 0; i < extsRequired->Size(); ++i) {
+ if ((*extsRequired)[i].IsString()) {
+ exts[(*extsRequired)[i].GetString()] = true;
+ }
+ }
+
+ CHECK_REQUIRED_EXT(KHR_draco_mesh_compression);
+
+#undef CHECK_REQUIRED_EXT
+}
+
+inline void Asset::ReadExtensionsUsed(Document &doc) {
+ Value *extsUsed = FindArray(doc, "extensionsUsed");
+ if (!extsUsed) return;
+
+ std::gltf_unordered_map<std::string, bool> exts;
+
+ for (unsigned int i = 0; i < extsUsed->Size(); ++i) {
+ if ((*extsUsed)[i].IsString()) {
+ exts[(*extsUsed)[i].GetString()] = true;
+ }
+ }
+
+ CHECK_EXT(KHR_materials_pbrSpecularGlossiness);
+ CHECK_EXT(KHR_materials_unlit);
+ CHECK_EXT(KHR_lights_punctual);
+ CHECK_EXT(KHR_texture_transform);
+ CHECK_EXT(KHR_materials_sheen);
+ CHECK_EXT(KHR_materials_clearcoat);
+ CHECK_EXT(KHR_materials_transmission);
+ CHECK_EXT(KHR_materials_volume);
+ CHECK_EXT(KHR_materials_ior);
+ CHECK_EXT(KHR_draco_mesh_compression);
+ CHECK_EXT(KHR_texture_basisu);
+
+#undef CHECK_EXT
+}
+
+inline IOStream *Asset::OpenFile(const std::string &path, const char *mode, bool /*absolute*/) {
+#ifdef ASSIMP_API
+ return mIOSystem->Open(path, mode);
+#else
+ if (path.size() < 2) return nullptr;
+ if (!absolute && path[1] != ':' && path[0] != '/') { // relative?
+ path = mCurrentAssetDir + path;
+ }
+ FILE *f = fopen(path.c_str(), mode);
+ return f ? new IOStream(f) : nullptr;
+#endif
+}
+
+inline std::string Asset::FindUniqueID(const std::string &str, const char *suffix) {
+ std::string id = str;
+
+ if (!id.empty()) {
+ if (mUsedIds.find(id) == mUsedIds.end())
+ return id;
+
+ id += "_";
+ }
+
+ id += suffix;
+
+ Asset::IdMap::iterator it = mUsedIds.find(id);
+ if (it == mUsedIds.end()) {
+ return id;
+ }
+
+ std::vector<char> buffer;
+ buffer.resize(id.size() + 16);
+ int offset = ai_snprintf(buffer.data(), buffer.size(), "%s_", id.c_str());
+ for (int i = 0; it != mUsedIds.end(); ++i) {
+ ai_snprintf(buffer.data() + offset, buffer.size() - offset, "%d", i);
+ id = buffer.data();
+ it = mUsedIds.find(id);
+ }
+
+ return id;
+}
+
+#if _MSC_VER
+# pragma warning(pop)
+#endif // _MSC_VER
+
+} // namespace glTF2