summaryrefslogtreecommitdiff
path: root/libs/assimp/code/Common/Subdivision.cpp
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2023-02-12 23:53:22 -0600
committersanine <sanine.not@pm.me>2023-02-12 23:53:22 -0600
commitf1fe73d1909a2448a004a88362a1a532d0d4f7c3 (patch)
treeab37ae3837e2f858de2932bcee9f26e69fab3db1 /libs/assimp/code/Common/Subdivision.cpp
parentf567ea1e2798fd3156a416e61f083ea3e6b95719 (diff)
switch to tinyobj and nanovg from assimp and cairo
Diffstat (limited to 'libs/assimp/code/Common/Subdivision.cpp')
-rw-r--r--libs/assimp/code/Common/Subdivision.cpp581
1 files changed, 0 insertions, 581 deletions
diff --git a/libs/assimp/code/Common/Subdivision.cpp b/libs/assimp/code/Common/Subdivision.cpp
deleted file mode 100644
index 705ea3f..0000000
--- a/libs/assimp/code/Common/Subdivision.cpp
+++ /dev/null
@@ -1,581 +0,0 @@
-/*
-Open Asset Import Library (assimp)
-----------------------------------------------------------------------
-
-Copyright (c) 2006-2022, assimp team
-
-
-All rights reserved.
-
-Redistribution and use of this software in source and binary forms,
-with or without modification, are permitted provided that the
-following conditions are met:
-
-* Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
-
-* Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
-
-* Neither the name of the assimp team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the assimp team.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-----------------------------------------------------------------------
-*/
-
-#include <assimp/Subdivision.h>
-#include <assimp/SceneCombiner.h>
-#include <assimp/SpatialSort.h>
-#include <assimp/Vertex.h>
-#include <assimp/ai_assert.h>
-
-#include "PostProcessing/ProcessHelper.h"
-
-#include <stdio.h>
-
-using namespace Assimp;
-void mydummy() {}
-
-#ifdef _MSC_VER
-#pragma warning(disable : 4709)
-#endif // _MSC_VER
-// ------------------------------------------------------------------------------------------------
-/** Subdivider stub class to implement the Catmull-Clarke subdivision algorithm. The
- * implementation is basing on recursive refinement. Directly evaluating the result is also
- * possible and much quicker, but it depends on lengthy matrix lookup tables. */
-// ------------------------------------------------------------------------------------------------
-class CatmullClarkSubdivider : public Subdivider {
-public:
- void Subdivide(aiMesh *mesh, aiMesh *&out, unsigned int num, bool discard_input);
- void Subdivide(aiMesh **smesh, size_t nmesh,
- aiMesh **out, unsigned int num, bool discard_input);
-
- // ---------------------------------------------------------------------------
- /** Intermediate description of an edge between two corners of a polygon*/
- // ---------------------------------------------------------------------------
- struct Edge {
- Edge() :
- ref(0) {}
- Vertex edge_point, midpoint;
- unsigned int ref;
- };
-
- typedef std::vector<unsigned int> UIntVector;
- typedef std::map<uint64_t, Edge> EdgeMap;
-
- // ---------------------------------------------------------------------------
- // Hashing function to derive an index into an #EdgeMap from two given
- // 'unsigned int' vertex coordinates (!!distinct coordinates - same
- // vertex position == same index!!).
- // NOTE - this leads to rare hash collisions if a) sizeof(unsigned int)>4
- // and (id[0]>2^32-1 or id[0]>2^32-1).
- // MAKE_EDGE_HASH() uses temporaries, so INIT_EDGE_HASH() needs to be put
- // at the head of every function which is about to use MAKE_EDGE_HASH().
- // Reason is that the hash is that hash construction needs to hold the
- // invariant id0<id1 to identify an edge - else two hashes would refer
- // to the same edge.
- // ---------------------------------------------------------------------------
-#define MAKE_EDGE_HASH(id0, id1) (eh_tmp0__ = id0, eh_tmp1__ = id1, \
- (eh_tmp0__ < eh_tmp1__ ? std::swap(eh_tmp0__, eh_tmp1__) : mydummy()), (uint64_t)eh_tmp0__ ^ ((uint64_t)eh_tmp1__ << 32u))
-
-#define INIT_EDGE_HASH_TEMPORARIES() \
- unsigned int eh_tmp0__, eh_tmp1__;
-
-private:
- void InternSubdivide(const aiMesh *const *smesh,
- size_t nmesh, aiMesh **out, unsigned int num);
-};
-
-// ------------------------------------------------------------------------------------------------
-// Construct a subdivider of a specific type
-Subdivider *Subdivider::Create(Algorithm algo) {
- switch (algo) {
- case CATMULL_CLARKE:
- return new CatmullClarkSubdivider();
- };
-
- ai_assert(false);
-
- return nullptr; // shouldn't happen
-}
-
-// ------------------------------------------------------------------------------------------------
-// Call the Catmull Clark subdivision algorithm for one mesh
-void CatmullClarkSubdivider::Subdivide(
- aiMesh *mesh,
- aiMesh *&out,
- unsigned int num,
- bool discard_input) {
- ai_assert(mesh != out);
-
- Subdivide(&mesh, 1, &out, num, discard_input);
-}
-
-// ------------------------------------------------------------------------------------------------
-// Call the Catmull Clark subdivision algorithm for multiple meshes
-void CatmullClarkSubdivider::Subdivide(
- aiMesh **smesh,
- size_t nmesh,
- aiMesh **out,
- unsigned int num,
- bool discard_input) {
- ai_assert(nullptr != smesh);
- ai_assert(nullptr != out);
-
- // course, both regions may not overlap
- ai_assert(smesh < out || smesh + nmesh > out + nmesh);
- if (!num) {
- // No subdivision at all. Need to copy all the meshes .. argh.
- if (discard_input) {
- for (size_t s = 0; s < nmesh; ++s) {
- out[s] = smesh[s];
- smesh[s] = nullptr;
- }
- } else {
- for (size_t s = 0; s < nmesh; ++s) {
- SceneCombiner::Copy(out + s, smesh[s]);
- }
- }
- return;
- }
-
- std::vector<aiMesh *> inmeshes;
- std::vector<aiMesh *> outmeshes;
- std::vector<unsigned int> maptbl;
-
- inmeshes.reserve(nmesh);
- outmeshes.reserve(nmesh);
- maptbl.reserve(nmesh);
-
- // Remove pure line and point meshes from the working set to reduce the
- // number of edge cases the subdivider is forced to deal with. Line and
- // point meshes are simply passed through.
- for (size_t s = 0; s < nmesh; ++s) {
- aiMesh *i = smesh[s];
- // FIX - mPrimitiveTypes might not yet be initialized
- if (i->mPrimitiveTypes && (i->mPrimitiveTypes & (aiPrimitiveType_LINE | aiPrimitiveType_POINT)) == i->mPrimitiveTypes) {
- ASSIMP_LOG_VERBOSE_DEBUG("Catmull-Clark Subdivider: Skipping pure line/point mesh");
-
- if (discard_input) {
- out[s] = i;
- smesh[s] = nullptr;
- } else {
- SceneCombiner::Copy(out + s, i);
- }
- continue;
- }
-
- outmeshes.push_back(nullptr);
- inmeshes.push_back(i);
- maptbl.push_back(static_cast<unsigned int>(s));
- }
-
- // Do the actual subdivision on the preallocated storage. InternSubdivide
- // *always* assumes that enough storage is available, it does not bother
- // checking any ranges.
- ai_assert(inmeshes.size() == outmeshes.size());
- ai_assert(inmeshes.size() == maptbl.size());
- if (inmeshes.empty()) {
- ASSIMP_LOG_WARN("Catmull-Clark Subdivider: Pure point/line scene, I can't do anything");
- return;
- }
- InternSubdivide(&inmeshes.front(), inmeshes.size(), &outmeshes.front(), num);
- for (unsigned int i = 0; i < maptbl.size(); ++i) {
- ai_assert(nullptr != outmeshes[i]);
- out[maptbl[i]] = outmeshes[i];
- }
-
- if (discard_input) {
- for (size_t s = 0; s < nmesh; ++s) {
- delete smesh[s];
- }
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-// Note - this is an implementation of the standard (recursive) Cm-Cl algorithm without further
-// optimizations (except we're using some nice LUTs). A description of the algorithm can be found
-// here: http://en.wikipedia.org/wiki/Catmull-Clark_subdivision_surface
-//
-// The code is mostly O(n), however parts are O(nlogn) which is therefore the algorithm's
-// expected total runtime complexity. The implementation is able to work in-place on the same
-// mesh arrays. Calling #InternSubdivide() directly is not encouraged. The code can operate
-// in-place unless 'smesh' and 'out' are equal (no strange overlaps or reorderings).
-// Previous data is replaced/deleted then.
-// ------------------------------------------------------------------------------------------------
-void CatmullClarkSubdivider::InternSubdivide(
- const aiMesh *const *smesh,
- size_t nmesh,
- aiMesh **out,
- unsigned int num) {
- ai_assert(nullptr != smesh);
- ai_assert(nullptr != out);
-
- INIT_EDGE_HASH_TEMPORARIES();
-
- // no subdivision requested or end of recursive refinement
- if (!num) {
- return;
- }
-
- UIntVector maptbl;
- SpatialSort spatial;
-
- // ---------------------------------------------------------------------
- // 0. Offset table to index all meshes continuously, generate a spatially
- // sorted representation of all vertices in all meshes.
- // ---------------------------------------------------------------------
- typedef std::pair<unsigned int, unsigned int> IntPair;
- std::vector<IntPair> moffsets(nmesh);
- unsigned int totfaces = 0, totvert = 0;
- for (size_t t = 0; t < nmesh; ++t) {
- const aiMesh *mesh = smesh[t];
-
- spatial.Append(mesh->mVertices, mesh->mNumVertices, sizeof(aiVector3D), false);
- moffsets[t] = IntPair(totfaces, totvert);
-
- totfaces += mesh->mNumFaces;
- totvert += mesh->mNumVertices;
- }
-
- spatial.Finalize();
- const unsigned int num_unique = spatial.GenerateMappingTable(maptbl, ComputePositionEpsilon(smesh, nmesh));
-
-#define FLATTEN_VERTEX_IDX(mesh_idx, vert_idx) (moffsets[mesh_idx].second + vert_idx)
-#define FLATTEN_FACE_IDX(mesh_idx, face_idx) (moffsets[mesh_idx].first + face_idx)
-
- // ---------------------------------------------------------------------
- // 1. Compute the centroid point for all faces
- // ---------------------------------------------------------------------
- std::vector<Vertex> centroids(totfaces);
- unsigned int nfacesout = 0;
- for (size_t t = 0, n = 0; t < nmesh; ++t) {
- const aiMesh *mesh = smesh[t];
- for (unsigned int i = 0; i < mesh->mNumFaces; ++i, ++n) {
- const aiFace &face = mesh->mFaces[i];
- Vertex &c = centroids[n];
-
- for (unsigned int a = 0; a < face.mNumIndices; ++a) {
- c += Vertex(mesh, face.mIndices[a]);
- }
-
- c /= static_cast<float>(face.mNumIndices);
- nfacesout += face.mNumIndices;
- }
- }
-
- {
- // we want edges to go away before the recursive calls so begin a new scope
- EdgeMap edges;
-
- // ---------------------------------------------------------------------
- // 2. Set each edge point to be the average of all neighbouring
- // face points and original points. Every edge exists twice
- // if there is a neighboring face.
- // ---------------------------------------------------------------------
- for (size_t t = 0; t < nmesh; ++t) {
- const aiMesh *mesh = smesh[t];
-
- for (unsigned int i = 0; i < mesh->mNumFaces; ++i) {
- const aiFace &face = mesh->mFaces[i];
-
- for (unsigned int p = 0; p < face.mNumIndices; ++p) {
- const unsigned int id[] = {
- face.mIndices[p],
- face.mIndices[p == face.mNumIndices - 1 ? 0 : p + 1]
- };
- const unsigned int mp[] = {
- maptbl[FLATTEN_VERTEX_IDX(t, id[0])],
- maptbl[FLATTEN_VERTEX_IDX(t, id[1])]
- };
-
- Edge &e = edges[MAKE_EDGE_HASH(mp[0], mp[1])];
- e.ref++;
- if (e.ref <= 2) {
- if (e.ref == 1) { // original points (end points) - add only once
- e.edge_point = e.midpoint = Vertex(mesh, id[0]) + Vertex(mesh, id[1]);
- e.midpoint *= 0.5f;
- }
- e.edge_point += centroids[FLATTEN_FACE_IDX(t, i)];
- }
- }
- }
- }
-
- // ---------------------------------------------------------------------
- // 3. Normalize edge points
- // ---------------------------------------------------------------------
- {
- unsigned int bad_cnt = 0;
- for (EdgeMap::iterator it = edges.begin(); it != edges.end(); ++it) {
- if ((*it).second.ref < 2) {
- ai_assert((*it).second.ref);
- ++bad_cnt;
- }
- (*it).second.edge_point *= 1.f / ((*it).second.ref + 2.f);
- }
-
- if (bad_cnt) {
- // Report the number of bad edges. bad edges are referenced by less than two
- // faces in the mesh. They occur at outer model boundaries in non-closed
- // shapes.
- ASSIMP_LOG_VERBOSE_DEBUG("Catmull-Clark Subdivider: got ", bad_cnt, " bad edges touching only one face (totally ",
- static_cast<unsigned int>(edges.size()), " edges). ");
- }
- }
-
- // ---------------------------------------------------------------------
- // 4. Compute a vertex-face adjacency table. We can't reuse the code
- // from VertexTriangleAdjacency because we need the table for multiple
- // meshes and out vertex indices need to be mapped to distinct values
- // first.
- // ---------------------------------------------------------------------
- UIntVector faceadjac(nfacesout), cntadjfac(maptbl.size(), 0), ofsadjvec(maptbl.size() + 1, 0);
- {
- for (size_t t = 0; t < nmesh; ++t) {
- const aiMesh *const minp = smesh[t];
- for (unsigned int i = 0; i < minp->mNumFaces; ++i) {
-
- const aiFace &f = minp->mFaces[i];
- for (unsigned int n = 0; n < f.mNumIndices; ++n) {
- ++cntadjfac[maptbl[FLATTEN_VERTEX_IDX(t, f.mIndices[n])]];
- }
- }
- }
- unsigned int cur = 0;
- for (size_t i = 0; i < cntadjfac.size(); ++i) {
- ofsadjvec[i + 1] = cur;
- cur += cntadjfac[i];
- }
- for (size_t t = 0; t < nmesh; ++t) {
- const aiMesh *const minp = smesh[t];
- for (unsigned int i = 0; i < minp->mNumFaces; ++i) {
-
- const aiFace &f = minp->mFaces[i];
- for (unsigned int n = 0; n < f.mNumIndices; ++n) {
- faceadjac[ofsadjvec[1 + maptbl[FLATTEN_VERTEX_IDX(t, f.mIndices[n])]]++] = FLATTEN_FACE_IDX(t, i);
- }
- }
- }
-
- // check the other way round for consistency
-#ifdef ASSIMP_BUILD_DEBUG
-
- for (size_t t = 0; t < ofsadjvec.size() - 1; ++t) {
- for (unsigned int m = 0; m < cntadjfac[t]; ++m) {
- const unsigned int fidx = faceadjac[ofsadjvec[t] + m];
- ai_assert(fidx < totfaces);
- for (size_t n = 1; n < nmesh; ++n) {
-
- if (moffsets[n].first > fidx) {
- const aiMesh *msh = smesh[--n];
- const aiFace &f = msh->mFaces[fidx - moffsets[n].first];
-
- bool haveit = false;
- for (unsigned int i = 0; i < f.mNumIndices; ++i) {
- if (maptbl[FLATTEN_VERTEX_IDX(n, f.mIndices[i])] == (unsigned int)t) {
- haveit = true;
- break;
- }
- }
- ai_assert(haveit);
- if (!haveit) {
- ASSIMP_LOG_VERBOSE_DEBUG("Catmull-Clark Subdivider: Index not used");
- }
- break;
- }
- }
- }
- }
-
-#endif
- }
-
-#define GET_ADJACENT_FACES_AND_CNT(vidx, fstartout, numout) \
- fstartout = &faceadjac[ofsadjvec[vidx]], numout = cntadjfac[vidx]
-
- typedef std::pair<bool, Vertex> TouchedOVertex;
- std::vector<TouchedOVertex> new_points(num_unique, TouchedOVertex(false, Vertex()));
- // ---------------------------------------------------------------------
- // 5. Spawn a quad from each face point to the corresponding edge points
- // the original points being the fourth quad points.
- // ---------------------------------------------------------------------
- for (size_t t = 0; t < nmesh; ++t) {
- const aiMesh *const minp = smesh[t];
- aiMesh *const mout = out[t] = new aiMesh();
-
- for (unsigned int a = 0; a < minp->mNumFaces; ++a) {
- mout->mNumFaces += minp->mFaces[a].mNumIndices;
- }
-
- // We need random access to the old face buffer, so reuse is not possible.
- mout->mFaces = new aiFace[mout->mNumFaces];
-
- mout->mNumVertices = mout->mNumFaces * 4;
- mout->mVertices = new aiVector3D[mout->mNumVertices];
-
- // quads only, keep material index
- mout->mPrimitiveTypes = aiPrimitiveType_POLYGON;
- mout->mMaterialIndex = minp->mMaterialIndex;
-
- if (minp->HasNormals()) {
- mout->mNormals = new aiVector3D[mout->mNumVertices];
- }
-
- if (minp->HasTangentsAndBitangents()) {
- mout->mTangents = new aiVector3D[mout->mNumVertices];
- mout->mBitangents = new aiVector3D[mout->mNumVertices];
- }
-
- for (unsigned int i = 0; minp->HasTextureCoords(i); ++i) {
- mout->mTextureCoords[i] = new aiVector3D[mout->mNumVertices];
- mout->mNumUVComponents[i] = minp->mNumUVComponents[i];
- }
-
- for (unsigned int i = 0; minp->HasVertexColors(i); ++i) {
- mout->mColors[i] = new aiColor4D[mout->mNumVertices];
- }
-
- mout->mNumVertices = mout->mNumFaces << 2u;
- for (unsigned int i = 0, v = 0, n = 0; i < minp->mNumFaces; ++i) {
-
- const aiFace &face = minp->mFaces[i];
- for (unsigned int a = 0; a < face.mNumIndices; ++a) {
-
- // Get a clean new face.
- aiFace &faceOut = mout->mFaces[n++];
- faceOut.mIndices = new unsigned int[faceOut.mNumIndices = 4];
-
- // Spawn a new quadrilateral (ccw winding) for this original point between:
- // a) face centroid
- centroids[FLATTEN_FACE_IDX(t, i)].SortBack(mout, faceOut.mIndices[0] = v++);
-
- // b) adjacent edge on the left, seen from the centroid
- const Edge &e0 = edges[MAKE_EDGE_HASH(maptbl[FLATTEN_VERTEX_IDX(t, face.mIndices[a])],
- maptbl[FLATTEN_VERTEX_IDX(t, face.mIndices[a == face.mNumIndices - 1 ? 0 : a + 1])])]; // fixme: replace with mod face.mNumIndices?
-
- // c) adjacent edge on the right, seen from the centroid
- const Edge &e1 = edges[MAKE_EDGE_HASH(maptbl[FLATTEN_VERTEX_IDX(t, face.mIndices[a])],
- maptbl[FLATTEN_VERTEX_IDX(t, face.mIndices[!a ? face.mNumIndices - 1 : a - 1])])]; // fixme: replace with mod face.mNumIndices?
-
- e0.edge_point.SortBack(mout, faceOut.mIndices[3] = v++);
- e1.edge_point.SortBack(mout, faceOut.mIndices[1] = v++);
-
- // d= original point P with distinct index i
- // F := 0
- // R := 0
- // n := 0
- // for each face f containing i
- // F := F+ centroid of f
- // R := R+ midpoint of edge of f from i to i+1
- // n := n+1
- //
- // (F+2R+(n-3)P)/n
- const unsigned int org = maptbl[FLATTEN_VERTEX_IDX(t, face.mIndices[a])];
- TouchedOVertex &ov = new_points[org];
-
- if (!ov.first) {
- ov.first = true;
-
- const unsigned int *adj;
- unsigned int cnt;
- GET_ADJACENT_FACES_AND_CNT(org, adj, cnt);
-
- if (cnt < 3) {
- ov.second = Vertex(minp, face.mIndices[a]);
- } else {
-
- Vertex F, R;
- for (unsigned int o = 0; o < cnt; ++o) {
- ai_assert(adj[o] < totfaces);
- F += centroids[adj[o]];
-
- // adj[0] is a global face index - search the face in the mesh list
- const aiMesh *mp = nullptr;
- size_t nidx;
-
- if (adj[o] < moffsets[0].first) {
- mp = smesh[nidx = 0];
- } else {
- for (nidx = 1; nidx <= nmesh; ++nidx) {
- if (nidx == nmesh || moffsets[nidx].first > adj[o]) {
- mp = smesh[--nidx];
- break;
- }
- }
- }
-
- ai_assert(adj[o] - moffsets[nidx].first < mp->mNumFaces);
- const aiFace &f = mp->mFaces[adj[o] - moffsets[nidx].first];
- bool haveit = false;
-
- // find our original point in the face
- for (unsigned int m = 0; m < f.mNumIndices; ++m) {
- if (maptbl[FLATTEN_VERTEX_IDX(nidx, f.mIndices[m])] == org) {
-
- // add *both* edges. this way, we can be sure that we add
- // *all* adjacent edges to R. In a closed shape, every
- // edge is added twice - so we simply leave out the
- // factor 2.f in the amove formula and get the right
- // result.
-
- const Edge &c0 = edges[MAKE_EDGE_HASH(org, maptbl[FLATTEN_VERTEX_IDX(
- nidx, f.mIndices[!m ? f.mNumIndices - 1 : m - 1])])];
- // fixme: replace with mod face.mNumIndices?
-
- const Edge &c1 = edges[MAKE_EDGE_HASH(org, maptbl[FLATTEN_VERTEX_IDX(
- nidx, f.mIndices[m == f.mNumIndices - 1 ? 0 : m + 1])])];
- // fixme: replace with mod face.mNumIndices?
- R += c0.midpoint + c1.midpoint;
-
- haveit = true;
- break;
- }
- }
-
- // this invariant *must* hold if the vertex-to-face adjacency table is valid
- ai_assert(haveit);
- if (!haveit) {
- ASSIMP_LOG_WARN("OBJ: no name for material library specified.");
- }
- }
-
- const float div = static_cast<float>(cnt), divsq = 1.f / (div * div);
- ov.second = Vertex(minp, face.mIndices[a]) * ((div - 3.f) / div) + R * divsq + F * divsq;
- }
- }
- ov.second.SortBack(mout, faceOut.mIndices[2] = v++);
- }
- }
- }
- } // end of scope for edges, freeing its memory
-
- // ---------------------------------------------------------------------
- // 7. Apply the next subdivision step.
- // ---------------------------------------------------------------------
- if (num != 1) {
- std::vector<aiMesh *> tmp(nmesh);
- InternSubdivide(out, nmesh, &tmp.front(), num - 1);
- for (size_t i = 0; i < nmesh; ++i) {
- delete out[i];
- out[i] = tmp[i];
- }
- }
-}